INDEPENDENT CALIFORNIA IN ORG	BEFORE THE ON NEUROSCIENCE AND MEDICINE OF THE CITIZENS' OVERSIGHT COMMITTEE TO THE STITUTE FOR REGENERATIVE MEDICINE GANIZED PURSUANT TO THE
CALIFORNIA S	TEM CELL RESEARCH AND CURES ACT REGULAR MEETING
LOCATION:	VIA ZOOM
DATE:	MAY 15, 2023 1 P.M.
REPORTER:	BETH C. DRAIN, CA CSR CSR. NO. 7152
FILE NO.:	2023-17

INDEX

ITEM DESCRIPTION	PAGE NO
OPEN SESSION	
1. CALL TO ORDER	3
2. ROLL CALL	3
DISCUSSION ITEMS	
3. GENERAL DISCUSSION AND REVIEW	4
4. EXTERNAL EXPERT ON NEUROPSYCHIATRIC DISEASE MODELING AND MOLECULAR PHENOTYPING: DANIEL GESCHWIND M.D. PH.D	9
5. EXTERNAL EXPERT ON NEUROPSYCHIATRIC DISEASE MODELING AND MOLECULAR PHENOTYPING: LILIA M IAKOUCHEVA, PH.D.	34
DISCUSSION AND POSSIBLE ACTION	
6. CONSIDERATION OF ELEMENTS OF A CIRM NEUROPSYCHIATRIC PROGRAM AND RECOMMENDATION TO ICOC ON NEXT STEPS	79
7. PUBLIC COMMENT	NONE
8. ADJOURNMENT	81
2	

	BETH C. DRAIN, CA CSR NO. 7152
1	MAY 15, 2023; 1:00 P.M.
2	
3	CHAIRMAN GOLDSTEIN: OKAY. GREAT. THANK
4	YOU, MARIANNE.
5	LET'S SEE. SO LET ME CALL US TO ORDER,
6	AND THEN THE FIRST ITEM OF BUSINESS IS MARIANNE IS
7	SUPPOSED TO CALL THE ROLL.
8	MS. DEQUINA-VILLABLANCA: LET'S MAKE SURE
9	WE GET THE RECORDING. ALL RIGHT.
10	LEONDRA CLARK-HARVEY.
11	DR. CLARK-HARVEY: PRESENT.
12	MS. DEQUINA-VILLABLANCA: MARIA
13	BONNEVILLE. MARK FISCHER-COLBRIE. FRED FISHER.
14	DR. FISHER: GOOD AFTERNOON.
15	MS. DEQUINA-VILLABLANCA: JUDY GASSON.
16	DR. GASSON: HERE.
17	MS. DEQUINA-VILLABLANCA: LARRY GOLDSTEIN.
18	CHAIRMAN GOLDSTEIN: HERE.
19	MS. DEQUINA-VILLABLANCA: DAVID HIGGINS.
20	DR. HIGGINS: HERE.
21	MS. DEQUINA-VILLABLANCA: VITO IMBASCIANI.
22	DR. IMBASCIANI: HERE.
23	MS. DEQUINA-VILLABLANCA: STEVE
24	JUELSGAARD.
25	DR. JUELSGAARD: PRESENT.
	3

1	MS. DEQUINA-VILLABLANCA: PAT LEVITT.
2	DR. LEVITT: HERE.
3	MS. DEQUINA-VILLABLANCA: LAUREN
4	MILLER-ROGEN.
5	MS. MILLER-ROGEN: HERE.
6	MS. DEQUINA-VILLABLANCA: AL ROWLETT.
7	MR. ROWLETT: PRESENT.
8	MS. DEQUINA-VILLABLANCA: MARVIN SOUTHARD.
9	DR. SOUTHARD: PRESENT.
10	MS. DEQUINA-VILLABLANCA: KEITH YAMAMOTO.
11	ALL RIGHT. WE ARE GOOD. WE HAVE QUORUM.
12	CHAIRMAN GOLDSTEIN: THANK YOU, MARIANNE.
13	AND DO WE HAVE OUR SPEAKERS PRESENT?
14	DR. GESCHWIND: YES.
15	MS. DEQUINA-VILLABLANCA: BOTH SPEAKERS
16	ARE PRESENT, YES.
17	CHAIRMAN GOLDSTEIN: AND LILIA?
18	DR. IAKOUCHEVA: HERE.
19	CHAIRMAN GOLDSTEIN: GOOD. OKAY. GREAT.
20	SO I WANT TO TAKE A FEW MINUTES BEFORE
21	TURNING THE MICROPHONE OVER TO DAN AND LILIA. AND I
22	THOUGHT IT WOULD BE USEFUL IF I JUST REVIEWED WHERE
23	WE'VE BEEN AND HOW WE GOT TO WHERE WE ARE WITH THIS
24	TASK FORCE. YOU MAY RECALL THAT OUR FIRST MEETING
25	WAS ON FEBRUARY THE 22D. AND ONE OF THE THINGS WE
	4

1	DID THERE IS WE GOT A VERY BRIEF OVERVIEW OF THE
2	CIRM PORTFOLIO, WHAT KINDS OF GRANTS ARE BEING
3	FUNDED, WHERE WERE THEY, WHAT TOPICS. AND AFTER
4	SOME DISCUSSION AMONGST OURSELVES AND WITH THE CIRM
5	STAFF, WE REALIZED THAT MANY OF THE TRADITIONAL
6	AREAS OF NEUROSCIENCE AND NEURO DISEASE WERE
7	ACTIVELY BEING FUNDED AND WERE MOVING ALONG, I DON'T
8	KNOW, BUT HEALTHY WAYS IS THE RIGHT WAY TO SAY IT
9	FOR SOME OF THE AREAS WHICH ARE VERY HARD, BUT
10	PROGRESS WAS BEING MADE.
11	ONE OF THE THINGS THAT WE COLLECTIVELY
12	NOTICED WAS THAT THE AREA OF NEUROPSYCHIATRIC
13	DISEASE, SO DISEASES SUCH AS DEPRESSION, ANOREXIA,
14	BIPOLAR, WHAT HAVE YOU, WERE ACTIVELY WERE
15	PRIMARILY MISSING FROM OUR PORTFOLIO. AND AFTER A
16	CONSIDERABLE AMOUNT OF DISCUSSION AT THAT MEETING,
17	WE AGREED ON TWO THINGS. ONE IS THAT WE WANTED TO
18	WORK WITH THE CIRM TEAM TO LEARN MORE ABOUT THE
19	NEUROPSYCHIATRIC AREA TO SEE IF WE THOUGHT THAT
20	THERE WERE GOOD AVENUES OF APPROACH USING STEM CELLS
21	OR GENE THERAPY. AND I'LL JUST BLOW THE SUSPENSE.
22	I THINK THAT WE'VE LEARNED THAT, IN FACT, THERE'S
23	SOME GOOD THINGS TO DO. AND THE SECOND THING WE
24	AGREED IS THAT WE WOULD PICK UP AND CONTINUE OUR
25	DISCUSSION OF THE GENERAL PORTFOLIO AT CIRM AND IN

5

1	THE STATE OF CALIFORNIA AND ASK WHETHER THERE ARE
2	OTHER AREAS OF OPPORTUNITY THAT WERE UNDERFUNDED AND
3	EVENTUALLY TO TRY TO TANGLE WITH THE QUESTION OF
4	WHETHER A BILLION AND A HALF, SOME FOLKS THINK IT'S
5	A SET ASIDE, SOME FOLKS THINK IT'S A TARGET, BUT
6	APPROXIMATELY A BILLION AND A HALF, WERE WE
7	ADEQUATELY TAKING ADVANTAGE OF THAT OPPORTUNITY TO
8	MAKE AN IMPACT IN ALL AREAS OF NEUROSCIENCE AND
9	NEUROMEDICINE.
10	I'LL SAY THAT OF THOSE TWO AREAS, WE
11	HAVEN'T BEEN AS ACTIVELY DISCUSSING THE GENERAL
12	PORTFOLIO ISSUES AT CIRM. AND I THINK THAT'S
13	SOMETHING WE NEED TO TAKE UP AGAIN ACTIVELY AT THE
14	NEXT MEETING OR THE ONE BEYOND. BUT I WILL SAY THAT
15	I THINK WE'VE DONE A PRETTY GOOD JOB OF EDUCATING
16	OURSELVES ABOUT THE STATE OF THE NEUROPSYCHIATRIC
17	DISEASE FIELD. AND LET ME JUST GIVE YOU A QUICK
18	SUMMARY OF THAT.
19	AT THE FIRST MEETING, WHICH WOULD HAVE
20	BEEN OUR MARCH MEETING, WE HAD TWO SPEAKERS,
21	JONATHAN SABAT FROM UC SAN DIEGO, AND I FORGET THE
22	GUY'S NAME, BUT DR. PIERCE FROM MASS GENERAL. AND
23	WHAT WE LEARNED FROM THEM WAS A GOOD DEAL ABOUT
24	NEUROPSYCHIATRIC GENETICS. AND WE LEARNED THAT
25	THERE WAS CONSIDERABLE GENETIC INFLUENCES ON DISEASE

6

1	AND, IN GENERAL, THE PATTERNS OF VARIATION THAT SEEM
2	TO BE SUPPORTING THE DEVELOPMENT OF NEUROPSYCHIATRIC
3	DISEASE WERE SIMILAR TO WHAT'S SEEN IN OTHER
4	DISORDERS OF THE BRAIN, WHICH IS THAT THERE WERE A
5	COUPLE OF RARE, HIGHLY ACTIVE VARIANTS THAT
6	PREDISPOSE STRONGLY TO DISEASE AS ONE CATEGORY. AND
7	THEN AS A SECOND CATEGORY THERE WERE CLEARLY CASES
8	WHERE LOTS OF VARIANTS, EACH OF SMALL EFFECT, WORKED
9	TOGETHER TO GENERATE DISEASE. AND THOSE VARIANTS
10	TENDED TO BE COMMON IN THE HUMAN POPULATION, AND
11	EACH ONE OF THEM WAS OF RELATIVELY SMALL EFFECT, BUT
12	THIS IS SORT OF THE PATTERN FOR A LOT OF DISEASES OF
13	THE BRAIN AND OF OTHER PARTS OF THE ANATOMY.
14	IN THE APRIL MEETING, WHICH WAS LAST
15	MONTH, WE HEARD FROM TOM SUDHOF AND KRISTEN
16	BRENNAND, AND WE LEARNED THAT, IN FACT, STEM CELLS
17	LOOKED AS THOUGH THEY COULD BE ACTIVELY USED IN THE
18	FIGHT AGAINST NEUROPSYCHIATRIC DISEASE AND HOPEFULLY
19	IN THE DEVELOPMENT OF THERAPEUTIC AVENUES. AND IN
20	PARTICULAR WE HEARD FROM TOM A REALLY BEAUTIFUL
21	SERIES OF EXPERIMENTAL OBSERVATIONS MADE IN HIS LAB
22	WHERE THEY DISSECT3ED ONE OF THE NEUROPSYCHIATRIC
23	DISORDERS USING STEM CELLS AND OTHER APPROACHES AND
24	WERE ABLE TO TRACK THE DISORDER DOWN TO A DEFECT IN
25	THE BEHAVIOR OF A MAJOR PROTEIN AT THE CONNECTION

7

1	BETWEEN NEURONS OR SYNAPSES, WHICH MAKES SOME SENSE.
2	BUT TOM'S'S WORK, I THINK, WAS REALLY A GREAT
3	EXAMPLE OF WHAT MAY BE ACHIEVABLE IN THIS FIELD IF
4	THERE'S ADEQUATE INVESTMENT.
5	AND THEN, FINALLY, WE HAVE TODAY'S MEETING
6	WITH DAN GESCHWIND AND LILIA OH, I'M GOING TO
7	MESS THIS UP, LILIA IAKOUCHEVA. I'M CLOSE AT
8	LEAST.
9	DR. IAKOUCHEVA: GOOD ENOUGH.
10	CHAIRMAN THOMAS: GOOD ENOUGH. OKAY.
11	THANK YOU.
12	AND THEY'LL TELL US ABOUT ADDITIONAL IT
13	PHENOTYPIC METHODS AND APPROACHES THAT CAN BE USED
14	TO FURTHER EVALUATE THE INFLUENCE OF GENETICS ON
15	THESE DISORDERS AND TO IMPROVE OUR UNDERSTANDING.
16	AND SO WITH THAT AS BACKGROUND, I NOW WANT TO TURN
17	THE FLOOR OVER TO OUR TWO SPEAKERS, EACH OF WHOM
18	WILL SPEAK FOR ON THE ORDER OF 20 MINUTES AND THEN
19	GIVE US FIVE OR TEN MINUTES OF DISCUSSION APIECE.
20	OUR FIRST SPEAKER IS DAN GESCHWIND, WHO IS
21	A FACULTY MEMBER AT UC LOS ANGELES. HE'S WELL-KNOWN
22	FOR HIS WORK IN AUTISM AND A NUMBER OF OTHER
23	NEUROGENETIC DISORDERS USING NOT JUST MEASUREMENTS
24	OF RNA, BUT SOPHISTICATED MATHEMATICS TO TRY TO
25	UNDERSTAND HOW THESE DISORDERS ARE GENERATED.

8

1	AND OUR SECOND SPEAKER IS, AS I MENTIONED,
2	LILIA IAKOUCHEVA, WHO'S A FACULTY MEMBER AT UC SAN
3	DIEGO, WHO I DON'T KNOW WELL, BUT WAS RECOMMENDED TO
4	ME BY A COLLEAGUE FOR HER WORK ON SINGLE-CELL RNA
5	METHODS AND RELATED TECHNOLOGIES.
6	BOTH OF OUR SPEAKERS AND PARTICIPANTS ARE
7	WELL-RESPECTED IN THE NEUROPSYCHIATRIC GENETICS
8	COMMUNITY. AND I THINK WITH NO FURTHER FUSS, LET ME
9	TURN THE PODIUM OVER TO WHICHEVER ONE OF YOU WOULD
10	LIKE TO GO FIRST.
11	DR. GESCHWIND: OKAY. HOW DO YOU WANT TO
12	RUN IT? SHOULD I GO SHALL WE JUST GO BY THE
13	ORDER?
14	DR. IAKOUCHEVA: YES, PLEASE. I'LL GO
15	AFTER YOU, DAN.
16	DR. GESCHWIND: OKAY.
17	SO CAN YOU GUYS SEE THIS? I'LL PUT IT ON
18	SCREEN. CAN YOU GUYS SEE THIS?
19	CHAIRMAN GOLDSTEIN: YEAH. GREAT.
20	DR. GESCHWIND: GREAT. OKAY. SO I'LL BE
21	BRIEF AS THIS IS A BRIEFING, AS BRIEF AS I CAN BE.
22	SO HERE IS JUST A QUICK DISCLOSURE. I'M
23	NOT TALKING ABOUT WORK RELATED TO THESE, BUT I DO
24	WANT TO DISCLOSE THEM.
25	SO WHAT I'M GOING TO SAY TODAY IS THAT
	9

1	GENETIC STUDIES HAVE YIELDED HUNDREDS OF LOCI AND IN
2	SOME CASES GENES THAT A CAUSE NEUROPSYCHIATRIC
3	DISEASE. AND THE REASON THIS IS SO IMPORTANT IS
4	THAT GENETICS GIVES YOU A CAUSAL ANCHOR. IT TELLS
5	YOU WHAT IS CAUSAL, WHERE TO START IN A WAY. BUT
6	THIS SUCCESS HAS BRED CHALLENGES. IT'S SHOWN THAT
7	ALL THESE DISORDERS ARE VERY HETEROGENEOUS.
8	SO THE OTHER POINT I'M GOING TO MAKE IS
9	THAT THE HUMAN IPSC-BASED MODELS ARE NOT ONLY UNIQUE
10	IN ALLOWING US TO STUDY THE FUNCTION OF HUMAN
11	GENETIC VARIATION, DISEASE-ASSOCIATED CAUSAL
12	VARIATION ON HUMAN NEURO DEVELOPMENT OF NEURAL
13	FUNCTION, BUT THEY'RE REALLY, REALLY EFFICACIOUS AND
14	THEY PERMIT HIGH THROUGHPUT ASSESSMENT. AND THAT'S
15	REALLY A KEY POINT HERE TOO IF WE ARE THINKING ABOUT
16	THE FUTURE OF DRUG DEVELOPMENT AS WELL.
17	SO LET ME JUST GIVE A QUICK PRIMER BECAUSE
18	I'M NOT SURE WHAT'S BEEN DISCUSSED AND I DON'T KNOW
19	EVERYBODY'S BACKGROUND. BUT THERE'S BASICALLY AN A
20	TRADE-OFF DUE TO EVOLUTION BETWEEN EFFECT SIZE AND
21	FREQUENCY. THINGS THAT HAVE VERY LARGE EFFECT SIZES
22	ARE WEEDED OUT BY NATURAL SELECTION. EFFECT SIZES
23	MEANS IF YOU HAVE THE MUTATION, YOU GET A BAD
24	DISEASE. AND SO IN MOST CASES RARE MUTATIONS,
25	SUFFICIENT TO BE CAUSAL SINGLE MUTATION CAUSES A

10

1	DISEASE. SO IT HAS A LARGE EFFECT, BUT THEY'RE VERY
2	RARE. AND THEY'RE TYPICALLY IDENTIFIED NOW BY
3	SEQUENCING, EITHER WHOLE EXOME OR WHOLE GENOME
4	SEQUENCING. THERE WERE OTHER METHODS TO DEFINE THEM
5	IN THE PAST.
6	COMMON GENETIC VARIANTS, THAT IS WHAT WE
7	ALL SHARE, IS ACTUALLY, AS LARRY MENTIONED, MOST OF
8	THE RISK FOR COMMON DISEASES AND COMMON DISORDERS,
9	BUT NONE OF THE INDIVIDUAL VARIANTS CAUSE THE
10	DISEASE IN THE WAY THEY'RE SUFFICIENT TO CAUSE IT
11	ALONE, BUT THEY'RE CAUSAL IN THAT THEY INCREASE RISK
12	AND THEY CONTRIBUTE TO THE DISEASE IN AN ADDITIVE
13	AGGREGATE FASHION. SO THEY ADD UP TO CAUSE OF
14	DISEASE, SO YOU NEED A BUNCH OF THEM. AND SO I'VE
15	DICHOTOMIZED THEM. OF COURSE, THEY CAN ACT TOGETHER
16	AS WELL.
17	SO GENETICS GIVES YOU KIND OF WHAT IN
18	QUOTES IN A KIND OF SILLY WAY IS A SIMPLE PARADIGM.
19	YOU KNOW THAT SOMETHING IS HERITABLE IN B, AND THIS
20	IS A PAPER THAT JONATHAN FLINT AND I WROTE A REVIEW
21	IN SCIENCE A FEW YEARS AGO JUST SAYING THESE
22	DISORDERS, THESE NEUROPSYCHIATRIC DISORDERS, ON THE
23	LEFT, A, ARE INCREDIBLY COMMON. THEIR PREVALENCE IS
24	HIGH FROM ANXIETY AND MAJOR DEPRESSION AT THE TOP
25	DOWN EVEN TO SCHIZOPHRENIA AND AUTISM, WHICH ARE

11

1	AROUND 1 PERCENT AT THE BOTTOM.
2	YOU CAN CALCULATE HERITABILITY IN A LOT OF
3	WAYS. I'M NOT GOING TO GO INTO TO THIS. BUT
4	SUFFICE IT TO SAY THESE DISORDERS ARE HIGHLY
5	HERITABLE. IN AUTISM THE MOST RECENT TWIN STUDIES
6	ESTIMATE BETWEEN 80 AND 85 PERCENT. THESE ARE
7	LARGE-SCALE POPULATION STUDIES IN SWEDEN. SO ONCE
8	YOU FIND HERITABILITY, THEN YOU CAN GO AND DO
9	ASSOCIATION STUDIES TO FIND LOCI. YOU COMPARE CASES
10	AND CONTROLS AND FIND THINGS THAT ARE ASSOCIATED
11	WITH DISEASE.
12	THE ISSUE WITH COMMON GENETIC VARIATION IN
13	THIS KIND OF GWAS PARADIGM OF FINDING GENES IS THAT
14	YOU'RE ACTUALLY FINDING REGIONS OF THE CHROMOSOME
15	THAT ARE ASSOCIATED WITH DISEASE, AND THEN YOU HAVE
16	TO ATTACH THAT TO A DISEASE GENE. AND SO FINDING
17	GENES IS NOT NECESSARILY DIRECTLY FALL OFF EASILY
18	FROM FINDING GWAS LOCI. AND THEN, OF COURSE, THE
19	NEXT STEP IS TO DETERMINE HOW THEY CAUSE DISEASE.
20	SO FROM A LOGICAL STANDPOINT, THIS IS A SIMPLE
21	PARADIGM. OF COURSE, EACH OF THESE STEPS ARE
22	DIFFICULT. BUT WHAT'S HAPPENED IS, BECAUSE OF THE
23	POWER OF GENETICS AND LARGE SAMPLE SIZES, LOCI HAVE
24	BEEN FOUND, IN FACT HUNDREDS OF THEM. AND THIS IS
25	JUST SHOWING FROM THAT ORIGINAL REVIEW THAT

12

1	STRUCTURAL VARIATIONS IN RED, IT DEPENDS ON WHAT
2	DISEASE YOU'RE LOOKING AT. THIS IS JUST A
3	CROSS-SECTION OF ALL THESE DIFFERENT DISORDERS IN A.
4	AND IT SHOWS THAT AS YOU GET LARGER AND LARGER CASE
5	STUDIES, LARGER AND LARGER STUDIES, YOU IDENTIFY
6	MORE AND MORE LOCI. SO AS WE INCREASE SAMPLE SIZE,
7	WE'RE GOING TO GET MORE AND MORE LOCI, AND THAT'S
8	WHAT'S HAPPENED. AND NOW HUNDREDS HAVE BEEN
9	IDENTIFIED IN SCHIZOPHRENIA, ET CETERA, AS THE
10	SAMPLE SIZES GROW.
11	WHAT WAS POINTED OUT BY THE DIFFERENCE
12	BETWEEN THE BLUE AND THE RED IS THAT THE GENETIC
13	ARCHITECTURE OF THESE DISORDERS IS A LITTLE BIT
14	DIFFERENT IN THAT SOME OF THEM, LIKE THE CHILDHOOD
15	DISORDERS, HAVE VERY RARE MUTATIONS. THESE
16	STRUCTURAL CHROMOSOMAL VARIATIONS ARE RARE CAUSAL
17	SINGLE HIT MUTATIONS AND MORE SO THAN THE COMMON
18	GENETIC DISORDERS IN A WAY. YOU'LL SEE THAT IN A
19	SECOND. BUT THE THINGS LIKE SCHIZOPHRENIA,
20	ANOREXIA, MAJOR DEPRESSION, BIPOLAR, THOSE HAVE VERY
21	LIMITED CONTRIBUTION FROM RARE MUTATIONS. IT'S
22	MOSTLY COMMON; WHEREAS, AUTISM IT'S KIND OF 50-50,
23	FOR EXAMPLE.
24	AND THIS IS JUST SHOWING FROM A REVIEW
25	THAT'S ABOUT FIVE YEARS PAST THAT OTHER ONE THAT
	13

1	THIS IS WHAT'S HAPPENING AS SAMPLE SIZES INCREASE
2	THE LOCI. SO LIKE WHAT I SHOWED YOU IN 2015 OF
3	ABOUT A HUNDRED SCHIZOPHRENIA LOCI, IT'S NOW ALMOST
4	300. AND SAME THING WITH BIPOLAR, MAJOR DEPRESSION.
5	BUT, AGAIN, YOU CAN SEE AT THE BOTTOM THE THINGS
6	LIKE AUTISM, ADHD, FEWER COMMON GENETIC
7	ASSOCIATIONS; BUT STILL AS SAMPLE SIZE INCREASES,
8	THIS HAS BEEN MASSIVELY POWERFUL. SO IT TELLS US
9	ONE REALLY IMPORTANT THING IS THAT NOT ONLY IS THE
10	HERITABILITY STUFF KIND OF RIGHT IN THAT THESE HAVE
11	A GENETIC COMPONENT, BUT THAT WE CAN IDENTIFY THE
12	GENETIC COMPONENT AND, EVEN THOUGH OUR
13	CONCEPTUALIZATION OF THESE DISEASES IS BASED ON
14	BEHAVIOR AND COGNITION, IT'S NOT LIKE A NEUROLOGIC
15	DISEASE WHERE WE CAN MEASURE NEUROPATHOLOGY AND HAVE
16	SOMETHING A LITTLE BIT MORE SPECIFIC. EVEN DESPITE
17	THAT KIND OF HAZINESS IN DIAGNOSIS, THERE STILL IS
18	SOME BIOLOGICAL UNDERPINNING TO THOSE DIAGNOSES
19	WHICH IS KIND OF REMARKABLE.
20	SO I'LL SWITCH TO AUTISM A LITTLE BIT TO
21	GIVE YOU AN EXAMPLE OF WHERE WE ARE THERE. SO
22	AUTISM IS CLINICALLY AND GENETICALLY HETEROGENEOUS.
23	THERE ARE MANY FORMS OF GENETIC VARIATION AND MODES
24	OF INHERITANCE. AUTISM IS DEFINED BY DEFECTS IN
25	SOCIAL COGNITION AND MENTAL FLEXIBILITY AND OVERLAPS

14

1	ABOUT 5 TO 10 PERCENT OF EPILEPSY, ABOUT 30 PERCENT
2	OF INTELLECTUAL DISABILITY, BUT THEY DON'T HAVE TO
3	HAVE INTELLECTUAL DISABILITY. BUT AUTISM OVERLAPS
4	WITH OTHER NEURODEVELOPMENTAL DISORDERS AND CAN HAVE
5	COMORBIDITY.
6	AND SO, AGAIN, WHEN WE LOOK AT AUTISM,
7	THIS IS GETTING MORE SPECIFIC ABOUT WHAT CAUSES
8	AUTISM. STARTING AT THE RIGHT, ABOUT 40 PERCENT,
9	AGAIN, THIS IS ABOUT SIX YEARS AGO, IS UNACCOUNTED
10	FOR. ABOUT 50 PERCENT IS PREDICTED TO BE THESE
11	COMMON GWAS HITS, COMMON GENETIC VARIATION, THINGS
12	THAT ARE SHARED IN MORE THAN 1 PERCENT OF THE
13	POPULATION. AND ABOUT 10 PERCENT WAS KNOWN TO BE
14	CAUSED BY RARE MUTATIONS, EITHER STRUCTURAL
15	CHROMOSOMAL VARIATION CALLED COPY NUMBER VARIATION.
16	IN THE MIDDLE, KNOWN MEDICAL GENETIC CONDITIONS LIKE
17	FRAGILE X OR NEWLY DISCOVERED THINGS. AND HERE AT
18	THIS TIME THERE WERE ABOUT A DOZEN OR 20 OF THOSE,
19	AND NOW THERE ARE ALMOST 200 OF THESE TO FILL IN.
20	AS THESE HAVE GOTTEN FILLED IN, THE
21	UNACCOUNTED FOR IS SHRINKING MORE AND MORE AND MORE
22	IN THE LAST SIX YEARS. SO GENE DISCOVERY HAS BEEN
23	OFF THE CHARTS. SO THERE'S A PROPORTION OF AUTISM,
24	ABOUT 15 PERCENT, LET'S SAY, MAYBE 20 PERCENT,
25	THAT'S CAUSED BY RARE SINGLE MUTATIONS THAT COULD
	15

15

1	INVOLVE, IF THEY'RE STRUCTURAL, LIKE A CHROMOSOMAL
2	GENE, AND SO THAT PROPORTION OF AUTISM IS A
3	COLLECTION OF RARE DISORDERS.
4	AND CURRENTLY, CLINICALLY GENETIC TESTING
5	CAN IDENTIFY 10 TO 20 PERCENT OF MUTATIONS
6	CONTRIBUTING TO AUTISM. IN OTHER WORDS, YOU HAVE A
7	HUNDRED PEOPLE IN THE CLINIC, YOU DO GENETIC
8	TESTING, YOU'RE GOING TO FIND A MUTATION, A CAUSAL
9	VARIANT IN 10 TO 20 PERCENT DEPENDING ON HOW THAT
10	IS. SO REALLY MASSIVELY GENETICS HAS BEEN
11	MASSIVELY IMPORTANT HERE.
12	BUT WE HAVE A CHALLENGE THAT COMES FROM
13	ALL THIS SUCCESS. ADVANCES IN GENETICS AND GENOMICS
14	HAVE IDENTIFIED MANY GENES THAT ARE INVOLVED IN
15	THESE DISORDERS AND AUTISM. AND THEY PROVIDE
16	TARGETS FOR MECHANISTIC UNDERSTANDING AND THERAPY
17	JUST LIKE CANCER. HOWEVER, THESE FINDINGS HIGHLIGHT
18	EXTREME HETEROGENEITY EVEN IN THESE RARE DISORDERS.
19	AND SO ONE OF THE QUESTIONS IS DO WE HAVE TO DEVELOP
20	A SPECIFIC TREATMENT FOR EACH LIKE FORM? OR IS
21	THERE GOING TO BE CONVERGENCE ON SPECIFIC BIOLOGICAL
22	PATHWAYS, DEVELOPMENTAL STAGES OR PROCESSES OR BRAIN
23	CIRCUITRY? AGAIN THE ANALOGY, IN CANCER
24	THERE'S EVERY CANCER PROLIFERATES, METASTATIC
25	CANCER, OR INVADES. SO THAT'S A CONVERGENT PART OF

1	THEIR BIOLOGY. OF COURSE, THEY DO IT VIA DIFFERENT
2	MECHANISMS.
3	AND SO ONE OF THE KEY POINTS HERE AS WELL
4	IS THAT GENES DON'T ACT ALONE. THEY ACT IN CONCERT
5	WITH OTHER GENES. AND SO IT'S REALLY KEY TO TAKE A
6	SYSTEMATIC, UNBIASED KIND OF SYSTEMS BIOLOGY
7	APPROACH, GOING FROM SEQUENCE DATA TO ALL THESE
8	OTHER LEVELS OF GENETIC, GENOMIC, EPIGENETIC DATA.
9	AND WE NOW ACTUALLY HAVE TOOLS TO INTEGRATE AT ALL
10	THESE LEVELS AND TO TAKE THIS FORWARD AND HAVE A
11	REAL MECHANISTIC, MULTILEVEL UNDERSTANDING OF THESE
12	DISORDERS, MOVING FROM SEQUENCE TO CELL.
13	ANOTHER CHALLENGE, THOUGH, AND I'VE BEEN
14	TALKING ABOUT AUTISM, RIGHT, BECAUSE AUTISM WE HAVE
15	200 RARE GENES THAT WE CAN WORK ON. BUT IN
16	SCHIZOPHRENIA, BIPOLAR, AND MAJOR DEPRESSION WHICH
17	DON'T HAVE MANY OF THOSE RARE GENES, THERE ARE A
18	HANDFUL, A DOZEN OR SO FOR SCHIZOPHRENIA, MOST
19	DISEASE CAUSING HUMAN GENETIC VARIATION, MOST OF THE
20	GWAS HITS THAT I SHOWED YOU LIE IN NONCODING GENETIC
21	REGIONS WHOSE FUNCTION IS NOT KNOWN, BUT THEY
22	GENERALLY REGULATE GENE EXPRESSION. THESE ARE
23	REGULATORY REGIONS. THEY TURN GENES ON AND OFF OR
24	THEY REGULATE THE SPLICING OF GENES. THINGS THAT
25	TURN GENES ON ARE CALLED ENHANCERS.

17

1	NOW, THERE ARE ALL KINDS OF
2	PROBLEMS THIS CAN CAUSE ALL KINDS OF CHALLENGES
3	BECAUSE MOST GENE REGULATION OCCURS AT A DISTANCE.
4	SO I'M GOING TO GIVE YOU AN EXAMPLE OF THE 108
5	SCHIZOPHRENIA-ASSOCIATED GENETIC LOCI IN 2014, WHICH
6	WAS A MAJOR LANDMARK IN THE FIELD, ONLY ABOUT TEN
7	CHANGED THE CODING REGION OF A PROTEIN. THE REST
8	WERE IN NONCODING REGIONS THAT ARE REGULATORY. SO
9	ASSIGNING THEM TO GENES WAS REALLY, REALLY HARD.
10	AND ONE OF THE KEY THINGS IS THAT THESE
11	NONCODING REGIONS ARE A BIG PART OF WHAT MAKES US
12	HUMAN, AND THEY'RE NOT WELL CONSERVED IN OTHER
13	SPECIES, CERTAINLY NOT IN RODENTS. THERE'S SOME,
14	BUT THEY'RE NOT WELL CONSERVED LIKE PROTEINS ARE.
15	SO THIS MEANS THAT WE NEED HUMAN MODELS IF WE'RE
16	GOING TO UNDERSTAND THIS. WE CANNOT DO ALL OF THIS
17	IN MOUSE OR OTHER SPECIES.
18	SO WHAT DO NONCODING REGIONS DO? THEY
19	TURN GENES ON AND OFF. BUT HOW DO WE KNOW THAT?
20	THEY ALTER SPLICING AND EXPRESSION OF TARGET GENES,
21	AND WE CAN FIGURE THIS OUT BY MAKING MAPS OF
22	FUNCTIONAL ANNOTATION OF THE GENOME. AND THIS IS
23	JUST SHOWN HERE ON THE LEFT WITH A VARIETY OF
24	TECHNIQUES, DNA METHYLATION, HISTONE MODIFICATIONS,
25	CHROMATIN ACCESSIBILITY. ONCE WE MAKE THIS MAP, WE

1	CAN SAY, AHA, THIS IS AN ENHANCER PROBABLY. AND
2	THIS IS AN ENHANCER IN THE BRAIN BECAUSE MOST OF
3	THIS HAPPENS IN A TISSUE-SPECIFIC, CELL
4	TYPE-SPECIFIC MANNER. AND, AGAIN, AND IT'S SPECIES
5	SPECIFIC BECAUSE IT'S A NONCODING REGION IN MANY
6	CASES. ALSO, THESE REGIONS AREN'T SITTING IN GENES.
7	SO UNLESS THEY'RE VERY, VERY CLOSE TO A GENE, YOU
8	CAN'T REALLY ASSIGN THEM TO A GENE. YOU HAVE TO USE
9	OTHER METHODS, AND THAT'S SHOWN THE TARGET
10	IDENTIFICATION WITH THESE OTHER NEW METHODS CALLED
11	CHROMOSOMAL CONFIRMATION METHODS OR EXPRESSION
12	QUANTITATIVE TRAIT. THERE ARE A LOT OF DIFFERENT
13	WAYS TO ASSIGN FUNCTION, LIKE ONCE YOU IDENTIFY A
14	REGION THAT'S FUNCTIONAL THAT CONTAINS A GWAS HIT TO
15	ASSIGN IT TO A GENE, BUT IT'S NONTRIVIAL. AND SO
16	YOU HAVE TO HAVE MAPS OF EACH TISSUE IN EACH CELL IN
17	EACH DEVELOPMENTAL STAGE TO UNDERSTAND HOW GENETIC
18	VARIATION ACTUALLY WORKS.
19	AND SO THERE'S BEEN THIS THING CALLED
20	PSYCHENCODE WHICH IS BUILDING REFERENCE MAPS OF GENE
21	REGULATION, ENCODE EXPRESSION IN DEVELOPING AN ADULT
22	HUMAN BRAIN. AND THESE ARE JUST SOME OF THE PAPERS
23	THAT WE'VE BEEN INVOLVED IN IN DRIVING THIS FORWARD.
24	SOME OF THE NEW PAPERS ARE IN BIOARCHIVE AND
25	MEDARCHIVE.

19

1	JUST TO SAY THAT MAKING THESE MAPS HAS
2	BEEN ESSENTIAL; BUT NOW THAT WE HAVE THESE MAPS, ONE
3	CAN ASK HOW DO THEY WORK IN MODEL SYSTEMS LIKE STEM
4	CELLS. RIGHT? WE HAVE FUNCTIONAL GENOMIC MAPS.
5	KNOWING WHAT RNA IS EXPRESSED, WHAT GENES ARE TURNED
6	ON, WHAT IS ACTUALLY TURNING THEM ON AND OFF, AND WE
7	CAN ASK IN A NEUROTYPICAL BRAIN WHAT'S GOING ON IN
8	THESE IN VITRO MODELS. SO WE HAVE THE MAPS TO BE
9	ABLE TO DO ALL THE HARD CARTOGRAPHY THAT'S
10	NECESSARY.
11	AND SO THE IDEA IS WE FIND LOCI, RIGHT;
12	AND IF WE DO A WHOLE GENOME SEQUENCING OR WHOLE
13	EXOME SEQUENCING SHOWN ON THE LEFT, WE CAN ACTUALLY
14	IDENTIFY A GENE THAT'S MUTATED OR KNOCKED OUT OR
15	CHANGED IN SOME WAY. BUT FOR GWAS WE ARE NOT
16	IDENTIFYING A GENE. WE ARE JUST IDENTIFYING A LOCUS
17	THAT CONTAINS A LOT OF GENES. AND WE HAVE TO DO ALL
18	THIS OTHER WORK HERE UNDER FUNCTIONAL ARCHITECTURE
19	TO FIND THE GENES. SO WE MAKE ALL THESE GENOMIC
20	MEASUREMENTS, RNA SEQUENCING, CHROMATIN STATE, ET
21	CETERA. NOW, OF COURSE, GENES DON'T ACT ALONE.
22	THEY ACT TOGETHER AND THEY ACT WITHIN CELLS. SO TO
23	UNDERSTAND MECHANISMS, WE HAVE TO UNDERSTAND HOW
24	GENES ACT TOGETHER IN PATHWAYS AND IN NETWORKS IN
25	CERTAIN CELL TYPES, ET CETERA. SO THAT'S REALLY THE

20

1	CHALLENGE, BUT WE HAVE ALL THE TOOLS TO ACTUALLY DO
2	THIS NOW.
3	SO WE CAN ASK WHEN DO AUTISM RISK GENES
4	ACT AND IN WHAT CELL TYPES DO THEY ACT? AND SO
5	WE'VE DONE THAT AND OTHER PEOPLE HAVE, AND HERE ARE
6	SOME OF THE CITATIONS BELOW. THEY ACT PRENATALLY.
7	AUTISM IS CAUSED BY PRENATAL DISRUPTION OF BRAIN
8	DEVELOPMENT. THIS WAS THE FIRST PAPER TO SHOW IT.
9	IT WAS PUBLISHED IN 2013 WHEN WE JUST HAD A HANDFUL
10	OF GENES, BUT IT'S BEEN REPLICATED OVER AND OVER
11	AGAIN. AND THESE GENES FALL INTO DIFFERENT
12	PROSTHESES OR CLUSTERS, MODULES. WE JUST NUMBER
13	THEM, CALLED M2 AND M3. MOST AUTISM GENES SIT, MANY
14	OF THE ONES THAT WE'RE GOING TO TALK ABOUT, SIT IN
15	THAT M2 AND M3 AND REGULATE NEURAL DEVELOPMENT VIA
16	THEIR IMPACT ON TRANSCRIPTIONAL REGULATION.
17	AND THIS IS JUST SHOWING THAT'S RARE
18	GENES. THIS IS SHOWING FROM THE MOST RECENT AUTISM
19	GWAS HYEJUNG WON AND I TOOK A LOOK AT THOSE GENES IN
20	THAT PAPER AND SHOWED, AGAIN, THAT THEY PEAK AT
21	ABOUT RIGHT AT MID-GESTATION, VERY SIMILAR TO THE
22	PEAKING OF EXPRESSION OF THE RARE MUTATIONS. SO
23	COMMON AND RARE GENETIC VARIATION IN AUTISM PEAKS
24	DURING FETAL HUMAN DEVELOPMENT TO THEN IMPACT THINGS
25	LATER. DOESN'T MEAN EVERY GENE IS EXPRESSED THEN,

21

1	BUT IT'S JUST LIKE IF YOU WANT TO KNOW WHERE THINGS
2	CONVERGE, WHERE THEY'RE ADDING UP, THIS IS WHAT IT'S
3	TELLING US.
4	SO HERE'S ANOTHER REALLY WILD THING IS
5	THAT PSYCHIATRIC DISEASES ARE DIFFERENTIATED FROM
6	THE NEUROLOGIC DISEASES THAT LARRY WAS REFERRING TO
7	BECAUSE THEY HAVE NO VISIBLE PATHOLOGY. IF YOU HAVE
8	A STROKE, YOU CAN SEE IT ON AN MRI. IF YOU HAVE MS,
9	YOU CAN SEE IT ON THE TISSUE ON AN MRI. ALZHEIMER'S
10	DISEASE, THERE'S A PATHOLOGY, ALS, ET CETERA,
11	PARKINSON'S DISEASE. BUT PSYCHIATRIC DISEASES WERE
12	CONSIDERED SEPARATE BECAUSE THERE'S NO VISIBLE OR
13	MICROSCOPIC PATHOLOGY OR PROTEIN PATHOLOGY. BUT
14	ONCE WE WERE ABLE TO MEASURE RNA AT A GENOMEWIDE
15	LEVEL CHEAPLY, WE ARE WERE ABLE TO SHOW THAT THERE
16	IS A MOLECULAR PATHOLOGY OF PSYCHIATRIC DISEASES AND
17	THAT IT'S DEFINABLE, BUT IT'S JUST NOT VISIBLE UNDER
18	A MICROSCOPE. IT'S VISIBLE WHEN YOU LOOK AT RNA.
19	SO THIS WAS THE FIRST PAPER IN 2011. IN
20	2016 WE AGAIN EXPANDED THIS ABOUT FIVEFOLD USING
21	DIFFERENT METHODS, LOOKING AT MICRO RNA, LOOKING AT
22	CHROMATIN. WE SEE THE SAME THING OVER AND OVER
23	AGAIN, THAT IN CEREBRAL CORTEX THERE IS AND THIS
24	IS ONE OF THE MOST RECENT PAPERS WITH A HUGE DATASET
25	WHERE WE'VE EXPANDED THIS TO AUTISM, SCHIZOPHRENIA,

22

1	BIPOLAR COMPARISON TO CONTROL ALMOST 2,000 CASES AND
2	CONTROLS, AND IT VALIDATES WHAT'S FOUND BEFORE BUT
3	REALLY EXTENDS IT SUBSTANTIALLY TO THESE OTHER
4	DISORDERS AND SHOWS WHERE THEY OVERLAP AND WHERE
5	THEY DON'T OVERLAP.
6	AND THE LAST PAPER ON THE BOTTOM THERE,
7	THE WAMSLEY, ET AL. IN BIOARCHIVE IS ACTUALLY
8	SHOWING THAT AT A SINGLE CELL LEVEL.
9	SO THIS IS A ROBUST PATTERN.
10	DOWN-REGULATION OF GENES RELATED TO SYNAPTIC
11	SIGNALING, UP-REGULATION OF ASTROCYTES, MICROGLIA,
12	AND NEURAL IMMUNE PATHWAYS. BUT THE GENETIC RISK IS
13	DRIVING THE SYNAPTIC GENES. IT'S NOT DRIVING THE
14	UP-REGULATION OF MICROGLIA AND ASTROCYTE GENES.
15	THEY ARE A CONSEQUENCE OF THE GENETIC RISK.
16	SO WHAT WE HAVE NOW ARE RNA AND EPIGENETIC
17	PROFILING THAT DEFINES A PATHWAY. IT GIVES US LIKE
18	A GOLD STANDARD. THIS IS WHAT HAPPENS IN THE BRAIN.
19	WE CAN UNDERSTAND AS A STARTING POINT FOR
20	UNDERSTANDING DISEASE MECHANISMS AND THERAPEUTIC
21	DEVELOPMENT. IT'S DEFINITELY NOT AN ENDING POINT.
22	IT'S JUST A SIGNPOST ALONG THE WAY.
23	SO REALLY THE KEY QUESTION IS, AND I KNOW
24	LILIA IS GOING TO GET INTO THIS MORE, I'M JUST GOING
25	TO GIVE A VERY, VERY QUICK SHOT AT THIS, IS WE HAVE
	23

1	THESE MOLECULAR CHANGES THAT ARE ROBUSTLY SHOWN IN
2	POSTMORTEM BRAIN IN AUTISM AND OTHER SEVERE
3	NEUROPSYCHIATRIC DISORDERS. WE KNOW THAT GENETIC
4	RISK IS HAPPENING PRENATALLY. SO HOW DO THE
5	MOLECULAR CHANGES EMERGE? HOW DO WE UNDERSTAND WHAT
6	HAS HAPPENED IN BETWEEN NEUROGENESIS AND FUNCTIONING
7	TO ACTUALLY GET THERE, AND WHAT DOES THIS ACTUALLY
8	MEAN? SO WE NEED TO BE ABLE TO MODEL THIS.
9	SO THE QUESTION IS HOW DO WE CONNECT THE
10	MULTITUDE OF GENETIC RISK FACTORS TO THE ROBUST
11	MOLECULAR PATTERNS OBSERVED IN BRAIN? AND CAN WE
12	USE IN VITRO IPSC-BASED MODELS TO UNDERSTAND HOW
13	GENETIC RISK WOULD KIND OF PERCOLATE THROUGH
14	DEVELOPMENT TO LEAD TO THESE PATTERNS? AND SO THE
15	ANSWER IS YES. AND I'M JUST GOING TO REALLY FLASH
16	THROUGH THESE VIGNETTES TO GIVE LILIA MORE TIME TO
17	TALK.
18	SO ONCE YOU HAVE AN RNA PROFILE OF IN VIVO
19	BRAIN DEVELOPMENT, YOU HAVE A GENOMIC PROFILE OF
20	WHAT'S ACTIVE, WHAT'S TURNED ON, WHAT'S TURNED OFF,
21	YOU CAN USE THAT TO ASK HOW WELL DO MY CELLS
22	ACTUALLY MODEL THAT? YOU HAVE A QUANTITATIVE WAY OF
23	ASKING HOW DO NEURAL STEM CELLS MODEL IN VIVO BRAIN
24	DEVELOPMENT? SO WE'VE DEVELOPED TOOLS TO DO THAT.
25	THIS WAS THE FIRST ONE IN 2014 USING
	24

_	
1	TWO-DIMENSIONAL CULTURES, AND WE COULD SEE THAT THE
2	PATTERN OF HOW GENES ARE CO-REGULATED, TURNED ON AND
3	OFF, THAT WE SEE IN VIVO IS PRESERVED IN VITRO IN
4	THESE MODELS. SO THAT TELLS US THAT WE HAVE A
5	LOT THAT FOR MODELING THESE EARLY CHANGES, WE ARE
6	IN PRETTY GOOD SHAPE.
7	SUBSEQUENTLY WE'VE BEEN WORKING WITH
8	SERGIU PASCA'S LAB AT STANFORD TO REALLY UNDERSTAND
9	THIS MORE DEEPLY IN TERMS OF HOW MUCH BETTER ARE
10	THREE-DIMENSIONAL MODELS. AND, AGAIN, THIS PAPER IS
11	PUBLISHED. WHAT THIS SHOWS UP AT THE TOP IS THESE
12	CULTURES CAN BE CULTURED VERY REPRODUCIBLY USING
13	GENOMIC WE HAVE A QUANTITATIVE METHOD FOR
14	MEASURING ALL THE GENES EXPRESSED. AND WE CAN SEE
15	OVER AND OVER AGAIN WE GET BETWEEN AND WITHIN
16	INDIVIDUAL CO-EXPRESSION THAT'S REPRODUCIBLE.
17	THE OTHER THING, THOUGH, IS THAT WHAT
18	SERGIU'S LAB, SE-JIN YOON SHOWED, SHE CULTURED THESE
19	FOR SOMETIMES UP TO 600 DAYS. AND WHAT WE COULD
20	SHOW IS, ONCE WE HIT BETWEEN AROUND 280 DAYS, THE
21	TRANSITION TO LOOKING POSTNATAL USING THAT TOOL THAT
22	I SHOWED IN THE LAST SLIDE, A MACHINE LEARNING TOOL
23	THAT ACTUALLY TELLS YOU WHAT TRANSITIONS YOU'VE
24	ACTUALLY SEEN IN VIVO.
25	WE ALSO USED EPIGENETIC AGING, THE DNA
	25

1	METHYLATION CLOCK THAT STEVE HORVATH DEVELOPED, TO
2	LOOK AT THIS AND ASK IS MATURATION OCCURRING AT THE
3	NORMAL PATTERN IN VITRO? AND IT IS. SO THERE'S
4	LIKE AN INTERNAL CLOCK THAT'S TICKING. AND THAT
5	WHEN WE PUT THESE CELLS IN VITRO, THEY'RE MODELING
6	IN VIVO DEVELOPMENT AT THE TRANSCRIPTIONAL LEVEL AND
7	AT THE EPIGENETIC LEVEL. SO THAT'S PRETTY
8	REMARKABLE.
9	WE CAN ALSO THEN LOOK AND ASK WHEN ARE
10	SCHIZOPHRENIA GENES EXPRESSED? HOW WERE THEY
11	EXPRESSED? WE DID THIS WITH AUTISM GENES,
12	INTELLECTUAL DISABILITY, SCHIZOPHRENIA IN THIS
13	PAPER. AND WE SAW THAT AUTISM GENES KIND OF FELL
14	INTO FIVE CLUSTERS, ALL OF WHICH ARE EXPRESSED KIND
15	OF VERY, VERY EARLY IN DEVELOPMENT. AND THEN THERE
16	WAS ONE SMALLER CLUSTER RELATED MOSTLY TO GLIAL
17	DEVELOPMENT AND SOME OTHER THINGS THAT EXPRESSED
18	PRENATALLY, BUT KIND OF KEEPS GOING UP A LOT.
19	AND WE CREATED A BROWSER WHERE ONE CAN
20	LOOK AT THIS AND ASK IS MY GENE EXPRESSED? WHEN IS
21	IT HIGHEST? WHEN SHOULD I BE LOOKING AT IT, ET
22	CETERA?
23	SO WE'VE ALSO AGAIN, THIS WAS A CIRM
24	GENOMICS FUNDED PROJECT, FUNDED THROUGH CIRM ABOUT
25	FIVE, SIX YEARS AGO TO MY LAB AND SERGIU PASCA'S
	26

-	
1	LAB. AND SERGIU'S LAB TOOK PATIENTS WITH ALL OF
2	THESE MUTATIONS, 70 LINES TOTAL, 464 SAMPLES AND
3	DIFFERENTIATED THEM OVER A HUNDRED DAYS. AND WE
4	MEASURED GENE EXPRESSION. AND WE'VE BEEN ASKING
5	WHAT'S GOING ON? AND WHAT WE FIND IS THAT, ALTHOUGH
6	THERE IS SOME CLUSTERING BY TIME, OF COURSE, BECAUSE
7	TIME IS A BIG DEAL HERE, YOU GO FROM PROGENITORS ALL
8	THE WAY TO DIFFERENTIATED NEURONS AND STUFF IN A
9	DISH. BUT THE MUTATIONS CLUSTER TOGETHER IN VERY,
10	VERY SPECIFIC PATTERNS THAT ARE ROBUST TO WHATEVER
11	METHOD WE USED TO CLUSTER THEM. AND THIS IS JUST
12	SHOWING ONE. SO THERE ARE SHARED CONVERGENT
13	PATHWAYS THAT WE CAN SEE HERE.
14	AND I'M JUST GOING TO END BY SAYING THAT
15	THIS IS JUST LOOKING AT SOME OF THAT OVERLAP. AND,
16	AGAIN, IT GETS BACK TO THIS ISSUE OF CHROMATIN.
17	CHROMATIN IS HOW GENE TRANSCRIPTION AND GENE
18	REGULATION IS TURNED ON AND OFF. AND SO THESE
19	MUTATIONS OVERLAP IN THAT AREA, AND IN FACT THEY
20	OVERLAP QUITE SPECIFICALLY. WE'VE BEEN ABLE TO
21	IDENTIFY IN BLACK HERE IN THE MIDDLE ARE A MODULE
22	THAT WE CALL M5 THAT IS A BUNCH OF CHROMATIN
23	REGULATORS THAT DRIVE THE AUTISM RISK GENES AND ALL
24	THE DIFFERENT DISORDERS. AND IT'S REALLY QUITE
25	REPRODUCIBLE AND QUITE REMARKABLE.

27

1	WHAT'S AMAZING IS THAT THESE FORM A
2	PROTEIN INTERACTION NETWORK IN NEURONAL PROGENITORS
3	AND IT'S SPECIFIC. IT'S NOT IF WE TAKE THE
4	SCHEMA SCHIZOPHRENIA RISK GENES OR INTELLECTUAL
5	DISABILITY GENES, THIS NETWORK IS NOT DRIVING THEM.
6	SO WE FOUND THIS KIND OF AUTISM.
7	SO YOU MAY SAY OKAY. SO YOU HAVE THIS
8	NETWORK. WHAT CAN YOU DO WITH IT? WELL, NO. 1, IT
9	GIVES US A SENSE OF WHEN AND WHERE THINGS ARE BEING
10	TURNED ON AND OFF, WHAT CELL TYPES WE NEED TO LOOK
11	AT, ET CETERA, AND WHAT BIOLOGICAL PROCESSES ARE
12	BEING DISRUPTED? AND SO IT GIVES US REALLY A
13	STARTING PLACE FOR MECHANISTIC UNDERSTANDING.
14	BUT ONE OF THE QUESTIONS WE'VE ALWAYS HAD
15	IN THE BACK OF OUR MIND IS CAN ONE ACTUALLY TARGET A
16	NETWORK, EVEN IF WE DIDN'T KNOW THE BIOLOGY, THE
17	IDEA BEING THAT IF THIS NETWORK IS UP IN AUTISM AND
18	DOWN IN CONTROLS, IF WE JUST MOVE IT TOWARDS
19	CONTROL, COULD THAT ACTUALLY BE THERAPEUTIC EVEN
20	WITHOUT KNOWING THE MECHANISMS?
21	AND SO YOU PROBABLY ARE FAMILIAR WITH THE
22	BROAD CONNECTIVITY MAP. WHAT THEY HAVE DONE IS
23	THEY'VE GIVEN DRUGS TO CELLS AND THEN THEY MEASURED
24	THE RNA NETWORKS THAT ARE EXPRESSED AFTER EACH DRUG.
25	SO IT'S CONNECTING A DRUG TO A GENE EXPRESSION

28

1	PROFILE. SO WE CAN USE THAT GENE EXPRESSION PROFILE
2	THEN TO MAP TO OUR GENE EXPRESSION PROFILES IN OUR
3	DISEASE MODELS OF PATIENT TISSUES AND TRY TO FIND
4	SOMETHING, A DRUG THAT HAS THE REVERSE PATTERN BY
5	PATTERN MATCHING. AND WE'VE DONE THIS IN SOME OF
6	THOSE PAPERS THAT ARE DOWN TO THE RIGHT IN OTHER
7	DISORDERS, NOT IN AUTISM YET FOR VARIOUS REASONS
8	THAT I'M HAPPY TO DISCUSS. BUT YOU IDENTIFY DRUGS
9	THAT REVERSE THE PATTERN AND YOU TEST THE DRUGS IN
10	MODEL SYSTEMS, AND WE'VE SHOWN THAT THAT CAN
11	ACTUALLY BEGIN TO WORK.
12	SO THIS GIVES YOU A NUMBER OF DIFFERENT
13	WAYS THAT YOU CAN BEGIN TO APPROACH THIS. YOU CAN
14	DEEPLY UNDERSTAND THE BIOLOGY AND TRY TO FIND DRUGS
15	THAT MODIFY CHROMATIN AND MODIFY THE CHANGES THAT
16	ARE GOING ON, AND YOU CAN ALSO AT THE SAME TIME TRY
17	TO REVERSE THESE TRANSCRIPTIONAL CHANGES AND SEE IF
18	YOU CAN REVERSE THE BIOLOGY.
19	AND, LASTLY, ONE OF THE REASONS WE DO ALL
20	THE TRANSCRIPTOMES AND ALL OF THIS IS BECAUSE IT'S
21	VERY HIGH THROUGHPUT. IT'S UNBIASED. WE CAN LOOK
22	AT HUNDREDS OF GENES AND THOUSANDS OF SAMPLES IN
23	PARALLEL. WE HAVE TO BE ABLE TO DO THAT WITH OTHER
24	BIOLOGY. SO WITH OUR COLLEAGUES AT UCLA WE ARE
25	BUILDING A HIGH THROUGHPUT PHENOTYPING CENTER THAT
	20

29

-	
1	ALLOWS US TO NOT ONLY DO THIS WITH GENE EXPRESSION,
2	BUT ALSO WITH PHYSIOLOGY NETWORKS. AND WE CAN IMAGE
3	NOW WHOLE 96-WELL PLATES OF SAMPLES AND WITH 96
4	DIFFERENT MUTATIONS KIND OF SIMULTANEOUSLY AND BEGIN
5	TO UNDERSTAND WHAT'S GOING ON AT A PHYSIOLOGIC LEVEL
6	THERE. ONE CAN DO THE SAME THING WITH ANATOMY.
7	SO I'M VERY EXCITED ABOUT COUPLING THE
8	KIND OF GENOMICS AND GENETICS ALL THE WAY THROUGH TO
9	BIOLOGY IN A HIGH THROUGHPUT WAY TO BEGIN TO GET A
10	COHERENT PICTURE OF WHAT'S GOING ON IN A
11	HETEROGENEOUS DISTORTER LIKE THESE NEUROPSYCHIATRIC
12	DISORDERS.
13	SO I'LL CONCLUDE BY SAYING GENETICS
14	PROVIDES A CAUSAL ANCHOR FOR UNDERSTANDING DISEASE
15	MECHANISMS, THAT THE GENOMIC DATA AND OTHER OMICS,
16	LIKE PROTEOMICS, PROVIDE A QUANTITATIVE PLATFORM FOR
17	UNDERSTANDING HOW WELL MODEL SYSTEMS RECAPITULATE
18	HUMAN IN VIVO BRAIN DEVELOPMENT AND FUNCTION. THEY
19	ALSO PROVIDE A MEANS FOR DISCOVERY, AND THEY
20	STRONGLY SUPPORT THE USE OF THESE IPSC-DERIVED
21	SYSTEMS SO STUDY NEUROPSYCHIATRIC DISEASE
22	MECHANISMS. AND COUPLED WITH OTHER HIGH THROUGHPUT
23	BIOLOGY APPROACHES, THIS IS GOING TO BE AN
24	INCREDIBLY POWERFUL FRONTIER. SO THANK YOU FOR YOUR
25	ATTENTION.

30

1	I HAVE TO THANK ALL THE PEOPLE IN MY LAB
2	WHO HAVE CONTRIBUTED TO THIS. THE PEOPLE IN
3	PARENTHESES ALL THE PEOPLE WITH STARS HAVE GONE
4	OFF. PEOPLE IN PARENTHESES ARE RUNNING THEIR OWN
5	LABS AT OTHER PLACES. AARON GORDON DROVE THAT LAST
6	PIECE OF WORK WITH LUCY BICKS AND SE-JIN YOON IN
7	SERGIU PASCA'S LAB. SO THANKS FOR YOUR ATTENTION.
8	CHAIRMAN GOLDSTEIN: GREAT STUFF, DAN.
9	THAT'S REALLY TERRIFIC. THANK YOU FOR TAKING THE
10	TIME. WILL YOU BE ABLE TO STAY FOR A GENERAL
11	DISCUSSION AFTER LILIA'S TALK?
12	DR. GESCHWIND: YES. YES, SURE. THANK
13	YOU.
14	CHAIRMAN GOLDSTEIN: OKAY. GREAT.
15	THANKS.
16	SO WHAT I'D LIKE TO DO IS ANY BURNING
17	QUESTIONS, LET'S GET THEM OUT THERE NOW. OTHERWISE
18	LET'S WAIT FOR LILIA TO FINISH AND THEN WE'LL HAVE A
19	GENERAL DISCUSSION WITH BOTH OF OUR GUESTS.
20	DR. SOUTHARD: JUST WONDERED IF THERE ARE
21	SIMILAR DEVELOPMENTS FOR ADDICTION ISSUES THAT ARE
22	COMING UP?
23	DR. GESCHWIND: I'M NOT AS FAMILIAR WITH
24	THAT LITERATURE, BUT IN TERMS OF GWAS, ET CETERA,
25	THERE ARE GWAS LOCI FOR DIFFERENT SUBSTANCE USE
	31

1	DISORDERS. AND SO ONE COULD BEGIN TO IDENTIFY THE
2	GENES AND BEGIN TO WORK ON THAT AND DO THE SAME A
3	SIMILAR TYPE OF WORK. IT'S JUST IT HASN'T BEEN
4	QUITE AS PRODUCTIVE AS AUTISM OR SCHIZOPHRENIA YET.
5	CHAIRMAN GOLDSTEIN: ALTHOUGH THERE IS A
6	COMPANY THAT'S TRYING TO MARKET AND GET APPROVAL FOR
7	A GENETIC TEST FOR SUBSTANCE ABUSE DISORDERS. A LOT
8	OF THOSE MARKERS ARE IN THE REWARD PATHWAYS IN THE
9	BRAIN.
10	DR. GESCHWIND: THAT'S RIGHT. THAT'S
11	RIGHT.
12	CHAIRMAN GOLDSTEIN: LET ME JUST ASK ONE
13	FINAL QUESTION BEFORE WE MOVE TO LILIA, DAN. YOU
14	SAID SOMETHING THAT REALLY SURPRISED ME, WHICH IS
15	THAT YOU THINK THAT MOST OR ALL OF THE GENES THAT
16	ARE ACTIVE IN THESE NEUROPSYCHIATRIC DISORDERS ARE
17	ACTING IN THE NEURON AND THAT THE INFLAMMATORY
18	EFFECTS ARE SECONDARY AND THAT THERE'S NO DISEASE
19	WHERE THE FIRE IS STARTED IN THE INFLAMMATORY CELLS
20	AND SPREAD TO NEURONS.
21	DR. GESCHWIND: THAT IS THE CASE FOR
22	AUTISM. THERE ARE A HANDFUL OF GENES THAT ARE
23	EXPRESSED IN GLIA AND STUFF. BUT IF YOU LOOK AT THE
24	CONFLUENCE OF WHERE THE GENETIC RISK IS ADDING UP,
25	THE VAST MAJORITY IS IN EARLY NEURAL DEVELOPMENT,
	22

32

1	NEUROPROGENITORS, EARLY KIND OF ACTUALLY SPECIFIC
2	CLASSES OF PROJECTION IN INTERNEURONS. SO THAT'S
3	AUTISM. SCHIZOPHRENIA IS A LITTLE BIT DIFFERENT.
4	SCHIZOPHRENIA SHARES ENRICHMENT NEURONS AS WELL VERY
5	STRONGLY, BUT ALSO HAS AN MHC COMPONENT AND SOME
6	OTHER INFLAMMATORY COMPONENTS. SO THEY'RE
7	DIFFERENT. THESE DISORDERS AREN'T THE SAME. AND,
8	IN FACT, THE SHARING OF GENETIC RISK BETWEEN AUTISM
9	AND SCHIZOPHRENIA IS SOMEWHERE, IF YOU LOOK AT
10	COMMON GENETIC VARIATION, AROUND .2. SO .8 IS LIKE
11	NOT SHARED. SO MOST IS NOT SHARED. THERE'S SOME
12	SHARING OF NEURONAL THINGS. SO LIKELY SCHIZOPHRENIA
13	INVOLVES GENES THAT ARE EXPRESSED A LITTLE BIT LATER
14	IN DEVELOPMENT AND MUCH MORE LIKELY TO BE INVOLVED
15	IN SYNAPTIC FUNCTION THAN CHROMATIN.
16	SO AUTISM VERY, VERY EARLY DURING FETAL
17	DEVELOPMENT. SCHIZOPHRENIA, SOME FETAL KIND OF
18	DEVELOPMENTAL GENES, BUT KIND OF MORE OF IT IS KIND
19	OF IN NEURONAL AND POSTNATAL AND A LITTLE BIT MORE
20	MIXED BETWEEN NEURONS AND GLIA THAN AUTISM IS. BUT
21	THE GLIAL COMPONENT IN AUTISM IS REALLY KEY.
22	MICROGLIA ACTIVATION IS MASSIVE IN AUTISM POSTMORTEM
23	BRAIN, WAY MORE SO THAN IN BIPOLAR OR SCHIZOPHRENIA.
24	AND WE THINK IT'S A KEY COMPONENT OF THE DISORDER
25	AND MAY BE ONE OF THE THINGS THAT KIND OF

33

1	PROPAGATES. LIKE YOU CAN IMAGINE A SNOWBALL KIND OF
2	GOING DOWNHILL. SO WE DON'T THINK IT'S A GOOD
3	THING, BUT MOST OF THE GENETIC RISK, IT'S A NEURON,
4	THERE'S PROBABLY SYNAPTIC DYSFUNCTION, CHANGES IN
5	CIRCUITRY, GLIA UP-REGULATION. TO CREATE MORE
6	HOMEOSTATIC PLASTICITY WOULD BE THE MODEL. AND
7	THAT'S KIND OF WHAT'S GOING ON.
8	AND I THINK IN THE NEXT THREE OR FOUR
9	YEARS WE'RE GOING TO HAVE A REALLY USING THESE
10	MODELS, ACTUALLY WE'RE GOING TO HAVE A REALLY MUCH
11	BETTER SENSE OF THAT BECAUSE WE CAN ADD MICROGLIA TO
12	THESE MODELS AND SEE HOW THEY IMPACT. WE ARE DOING
13	STUDIES NOW WHERE WE HAVE THE GENETIC RISK IN A STEM
14	CELL-DERIVED NEURON AND IN A STEM CELL-DERIVED
15	MICROGLIA FROM THE SAME PATIENT. WE CAN MIX AND
16	MATCH AND REALLY BEGIN TO SHOW THIS AND SHOW HOW
17	IT'S AN INTERACTION BETWEEN THESE DIFFERENT CELL
18	TYPES.
19	CHAIRMAN GOLDSTEIN: AMAZING. TERRIFIC
20	STUFF. OKAY. LILIA, ARE YOU READY?
21	DR. IAKOUCHEVA: YES. LET ME SHARE MY
22	SCREEN.
23	CHAIRMAN GOLDSTEIN: OKAY. TAKE IT AWAY.
24	DR. IAKOUCHEVA: I'M SHARING MY SCREEN.
25	SO YOU GUYS SEE A FULL SCREEN AND MY MOUSE?
	34

1	CHAIRMAN GOLDSTEIN: VERY GOOD.
2	DR. IAKOUCHEVA: SO I THINK DAN REALLY SET
3	UP NICELY THE STAGE FOR MY TALK. AND I ALSO AM
4	REPEATING A COUPLE OF SLIDES ABOUT GENETICS OF
5	AUTISM SPECIFICALLY, BUT I'LL JUST GO FAST THROUGH
6	THEM SINCE YOU GUYS ALREADY SAW DAN'S BEAUTIFUL WORK
7	ON THE GENETICS OF AUTISM.
8	BUT MY LAB BASICALLY IS MAINLY FOCUSED ON
9	THE AUTISM SPECTRUM DISORDERS. WE ALL KNOW THAT THE
10	PREVALENCE OF AUTISM IS STEADILY INCREASING AND NOW
11	IS 1 IN 36 PREVALENCE ACCORDING TO THE LATEST CDC
12	REPORT. AUTISM HAS 4 TO 1 BOYS TO GIRLS RATIO AND
13	TYPICALLY DIAGNOSED BEFORE THE AGE OF THREE.
14	UNFORTUNATELY, DESPITE THE VERY STRONG
15	EFFORTS FROM SCIENTIFIC COMMUNITY, WE STILL DO NOT
16	HAVE A RELIABLE DIAGNOSTIC BIOMARKER TO DIAGNOSE
17	AUTISM. AND EVEN MORE UPSETTING, WE DON'T HAVE A
18	SINGLE FDA-APPROVED DRUG THAT TARGETS CORE SOCIAL
19	DEFICITS OF THE DISEASE.
20	SO, AGAIN, REPEATING WHAT DAN HAS ALREADY
21	ALLUDED TO, AUTISM FIELD RAN FROM ALMOST NO
22	CANDIDATES ABOUT A DECADE, A LITTLE BIT OVER A
23	DECADE AGO TO ALMOST, I WOULD SAY, TOO MANY
24	CANDIDATE GENES THANKS TO THE GENETICS. BUT AUTISM
25	IS VERY HIGHLY GENETIC HETEROGENEOUS.

1	SO WHAT GENES ARE INVOLVED IN AUTISM?
2	FROM THE WHOLE GENOME AND WHOLE EXOME SEQUENCING, WE
3	KNOW THAT RARE DE NOVO VARIANTS IN THE GENES ARE
4	STRONGLY IMPLICATED IN AUTISM SPECTRUM DISORDER.
5	AND COMMON VARIANTS, AS DAN ALREADY
6	MENTIONED, ARE ALSO INVOLVED, ALTHOUGH THE GWAS
7	STUDIES IN AUTISM DID NOT PRODUCE AS MANY GOOD
8	TARGETS AS, SAY, SCHIZOPHRENIA GWAS. CURRENTLY, WE
9	KNOW OF ABOUT 12 GENES THAT ARE HID BY COMMON
10	VARIANTS, BUT IT'S BASICALLY MAINLY BECAUSE OF THE
11	SMALL SAMPLES THAT WE HAVE FOR AUTISM.
12	AND AS THE GENES THAT ARE INVOLVED IN
13	AUTISM ARE SYNDROMIC GENES, SUCH AS FRAGILE X AND
14	RAD SYNDROME, ARE CAUSED BY MUTATIONS IN JUST ONE
15	SPECIFIC GENE THAT WE KNOW. AND A LOT OF CHILDREN
16	WITH THE SYNDROME ALSO HAVE FEATURES OF AUTISM.
17	AND, FINALLY, A LARGE ROLE IN AUTISM COPY NUMBER
18	VARIANTS PLAY, ITS REGIONS OF GENOMES THAT COULD BE
19	EITHER DUPLICATED OR DELETED AND ALSO STRONGLY
20	IMPLICATED IN AUTISM.
21	NOW THAT WE HAVE ALL THIS BREADTH OF
22	AUTISM CANDIDATE GENES THAT ARE NOW APPROACHING TO,
23	I WOULD SAY, MAYBE A THOUSAND EVEN WITH ABOUT A
24	HUNDRED THAT ARE VERY STRONGLY IMPLICATED, WHAT WE
25	WANT TO KNOW, OF COURSE, IS WHAT PATHWAYS ARE

36

1	DISRUPTED BY THESE GENES AND AT WHAT PERIOD OF BRAIN
2	DEVELOPMENT?
3	THE GREAT RESOURCE FOR IDENTIFYING THE
4	SPECIFIC PERIODS OF BRAIN DEVELOPMENT THAT COULD BE
5	IMPACTED BY AUTISM MUTATIONS IS THIS RESOURCE THAT'S
6	CALLED BRAINSPAN. IT'S BASICALLY A TRANSCRIPTOME OF
7	THE DEVELOPING HUMAN BRAIN STARTING FROM FETAL
8	STAGES TO ADULT, BUT THIS IS NOT BRAIN WITH AUTISM.
9	IT'S A TYPICALLY DEVELOPING HUMAN BRAIN. BUT WHAT
10	WE CAN DO WITH THIS, WE CAN ACTUALLY BUILD SO-CALLED
11	SPECIAL TEMPORAL BRAIN TRANSCRIPTOME NETWORKS. AND
12	THEN WHAT WE CAN DO WITH THIS NETWORK, WE CAN TAKE
13	GENES THAT ARE HIT BY THE AUTISM MUTATIONS AND MAP
14	THOSE GENES COMPUTATIONALLY TO THESE NETWORKS TO
15	IDENTIFY WHICH SPECIFIC PERIOD THESE GENES ARE
16	EXPRESSED THAT ARE HID BY AUTISM MUTATIONS AND AT
17	WHAT REGIONS, AT WHAT DEVELOPMENTAL STAGES.
18	AND DAN'S LAB, THIS PAPER THAT DAN ALREADY
19	SHOWED AS WELL AS MATT STATE AND SOME PAPERS FROM MY
20	LAB AS WELL, IDENTIFIED LATE MID-FETAL PERIOD OF
21	CORTICAL DEVELOPMENT AS BEING VERY CRUCIAL FOR THE
22	AUTISM DEVELOPMENT. AND DAN ALREADY ALSO MENTIONED
23	THAT.
24	SO NOW THAT WE KNOW THAT BRAIN KIND OF
25	DERAILMENT IN AUTISM HAPPENS IN LATE MID-FETAL
	37

-	
1	DEVELOPMENT, HOW CAN WE STUDY THEN AUTISM? SO WHAT
2	WE NEED ACTUALLY IS BASICALLY FETAL BRAIN WITH
3	AUTISM DIAGNOSIS; BUT, OF COURSE, IS NOT AVAILABLE
4	BECAUSE THE AUTISM IS DIAGNOSED AFTER BIRTH. SO HOW
5	CAN WE STUDY, THEN, LATE MID-FETAL PERIOD IN AUTISM
6	IF WE DON'T HAVE THE SAMPLES? SO IT'S A HUGE
7	BOTTLENECK OBVIOUSLY IN AUTISM RESEARCH IS A LACK OF
8	FETAL BRAIN SAMPLES WITH AUTISM DIAGNOSIS. I GUESS
9	THE ONLY THING THAT WE CAN DO IS TO RELY ON OTHER
10	MODELS TO STUDY FETAL BRAIN AND AUTISM. AND, OF
11	COURSE, THE GREAT MODELS THAT WE ARE USING NOW ARE
12	GENOME-EDITED ANIMAL MODELS WHERE WE CAN ACTUALLY
13	INTRODUCE THE MUTATION THAT IS FOUND IN THE PATIENT
14	INTO THE MOUSE OR RAT MODELS AND THEN WE CAN EXTRACT
15	THE FETAL BRAIN FROM THIS MODEL WITH THE MUTATION
16	FROM HUMAN AND INVESTIGATE THIS ANIMAL FETAL BRAIN.
17	ANOTHER AVENUE OF RESEARCH IS THE PATIENT
18	IPC-DERIVED ORGANOIDS. SO THIS MODEL COULD BE
19	DERIVED FROM THE TISSUES FROM AUTISM PATIENTS SUCH
20	AS BLOOD AND ALSO SKIN. AND THE ADVANTAGE OF THIS
21	MODEL IS THAT, FIRST OF ALL, THEY'RE DERIVED FROM
22	THE AUTISM PATIENT. SO THEY'RE BASICALLY
23	GENETICALLY IDENTICAL TO THE PATIENTS. AND
24	SECONDLY, AS I WILL SHOW LATER, THEY RECAPITULATE
25	HUMAN FETAL BRAIN DEVELOPMENT. AND ANOTHER

38

1	ADVANTAGE OF THIS MODEL IS THAT WE CAN ACTUALLY
2	STRATIFY THE PATIENTS WITH SPECIFIC MUTATIONS TO
3	INCREASE THE STATISTICAL POWER OF OUR FINDING RATHER
4	THAN LOOKING AT THE IDIOPATHIC AUTISM WITH DIFFERENT
5	TYPES OF MUTATIONS. WE CAN ACTUALLY FOCUS ON
6	PATIENTS WITH SPECIFIC MUTATION AND MAYBE IDENTIFY
7	MECHANISM OF DISEASE.
8	AND MY LAB STUDIED BOTH OF THESE MODELS,
9	AND TODAY I'M JUST GOING TO FOCUS ON THIS
10	PATIENT-DERIVED IPC ORGANOIDS THAT WE USE FOR ONE
11	SPECIFIC MUTATION. AND I SHOW HOW WE IDENTIFIED THE
12	PATHWAY THAT CAN BE IMPACTED BY THIS MUTATION.
13	SO WE STUDIED THE SPECIFIC MUTATION THAT
14	IS HIGHLY IMPLICATED IN AUTISM. IT'S CALLED 16P11.2
15	COPY NUMBER VARIANTS. THESE COPY NUMBER VARIANTS
16	CAN BE EITHER DELETED OR DUPLICATED FROM THE GENOMES
17	OF CHILDREN WITH AUTISM. AND IT CONSISTS OF 29
18	GENES. IT'S NOT ONE GENE. IT'S 29 GENES. AND IT'S
19	THE MOST FREQUENT AMONG ALL RARE COPY NUMBER
20	VARIANTS THAT ARE IMPLICATED IN AUTISM.
21	BUT WHAT IS VERY INTERESTING ABOUT THIS
22	VARIANT IS THAT THIS IS RISK THIS VARIANT CONFERS
23	RISK TO MULTIPLE NEUROPSYCHIATRIC DISORDERS. FOR
24	EXAMPLE, THE DELETIONS SHOWN IN RED HERE OF THIS
25	VARIANT HAVE A HIGH ODDS RATIO FOR INTELLECTUAL
	20

39

1	DISABILITY AND AUTISM; WHEREAS, DUPLICATIONS OF
2	EXACTLY THE SAME 29 GENES CONFER HIGH RISK AGAIN FOR
3	AUTISM, BUT ALSO FOR SCHIZOPHRENIA. IT'S REALLY
4	INTRIGUING HOW THIS VARIANT BASICALLY WITH THE SAME
5	29 GENES WOULD PLAY A ROLE IN AUTISM AND
6	SCHIZOPHRENIA AND INTELLECTUAL DISABILITY AS WELL.
7	ANOTHER INTERESTING FEATURE OF THIS
8	VARIANT IS THAT DELETIONS ARE ASSOCIATED WITH
9	ENLARGED HEAD SIZE AND ALSO HIGHER BODY MASS INDEX
10	IN THE PATIENTS. AND DUPLICATIONS HAVE OPPOSITE
11	EFFECT. SO CHILDREN WITH DUPLICATIONS HAVE
12	MICROCEPHALY OR REDUCED HEAD SIZE AND ALSO THEY ARE
13	SKINNIER. AND THIS WAS ALSO CONFIRMED BY THE BRAIN
14	MRI OF THE PATIENTS WITH THESE MUTATIONS. NOT ONLY
15	HEAD SIZE, BUT ALSO BRAIN SIZE RECAPITULATES THIS
16	MACROCEPHALY AND MICROCEPHALY.
17	SO THERE ARE THREE MOUSE MODELS THAT WERE
18	DEVELOPED WITH THIS SPECIFIC COPY NUMBER VARIANT.
19	AND WHAT'S INTERESTING AND THOSE THREE MODELS,
20	THEY WERE DESIGNED LIKE ON DIFFERENT GENETIC
21	BACKGROUND AND MAYBE THEY HAVE A LITTLE BIT
22	DIFFERENT BREAKPOINT OF THIS COPY NUMBER VARIANT,
23	BUT WHAT'S INTERESTING ABOUT THESE THREE DIFFERENT
24	MOUSE MODELS, THAT SOME OF THE PHENOTYPES OF THE
25	THESE MICE ARE CONCORDANT BETWEEN MODELS. FOR

40

1	EXAMPLE, IN ALL THREE MODELS THE DELETION MICE HAVE
2	HYPERACTIVITY, AND ALSO THERE ARE SOME BRAIN REGION
3	SIZE DIFFERENCES THAT ARE SHARED BETWEEN THOSE
4	MODELS.
5	BUT ANOTHER INTERESTING FEATURE OF THIS
6	MODEL IS THAT SOME PHENOTYPES IN THESE MODELS ARE
7	DISCORDANT BETWEEN EACH OTHER. SO THERE IS HERE
8	DEFICITS IN ONE MODEL, BUT NOT IN THE OTHER. BUT
9	THE MOST KIND OF PROBLEMATIC THING ABOUT THESE
10	MODELS IS THAT SOME PHENOTYPES BETWEEN MOUSE MODELS
11	AND HUMANS ARE DISCORDANT. AS I MENTIONED BEFORE,
12	YOU KNOW THAT DELETIONS ARE ASSOCIATED WITH
13	MACROCEPHALY AND HIGH BMI AND DUPLICATIONS ARE
14	OPPOSITE. SO WHEN YOU LOOK AT THE MICE, IN AT LEAST
15	TWO OF THESE MODELS, WE SEE ACTUALLY OPPOSITE. WE
16	SEE DECREASED TOTAL BRAIN VOLUME IN DELETIONS AND
17	DELETION MICE ALSO LEAN AND DUPLICATIONS OBESE,
18	WHICH IS COMPLETELY OPPOSITE TO THE HUMAN PHENOTYPE.
19	THEN THERE WAS ALSO THE BRITISH MODEL THAT
20	WERE DESIGNED FOR THESE COPY NUMBER VARIANTS. AND
21	THE BRITISH MODEL, ONE OF THE PAPERS THAT DELETED
22	ONE BY ONE ALL THESE 29 GENES SHOWED THAT ONE OF THE
23	GENES THAT'S CALLED KCTD13 HAS IMPACT ON THE FISH
24	HEAD SIZE IN THE SAME DIRECTION AS THE COPY NUMBER
25	VARIANT IN HUMAN. HOWEVER, THE PAPER A RECENT

41

	-
1	PAPER THAT TRIED TO REPLICATE THESE RESULTS COULD
2	NOT REPLICATE THESE RESULTS. AND SO DESIGNED A
3	MOUSE MODEL WITH THIS SPECIFIC GENE FROM THIS COPY
4	NUMBER VARIANT DELETED, AND THEY DID NOT SEE ANY
5	HEAD SIZE PHENOTYPE IN THIS MOUSE MODEL.
6	SO JUST TO SUMMARIZE, ALTHOUGH ANIMAL
7	MODELS CAN BE A GOOD MODEL FOR SOME OF THE GENES FOR
8	AUTISM, IT LOOKS LIKE FOR THIS SPECIFIC COPY NUMBER
9	VARIANT, THEY'RE NOT AS GREAT BECAUSE OF THIS, LIKE,
10	DISCORDANT PHENOTYPES BETWEEN HUMAN AND MOUSE
11	BECAUSE OF INCONSISTENCY BETWEEN DIFFERENT MOUSE
12	MODELS. THAT'S WHY WE DECIDED ACTUALLY TO RESORT TO
13	STUDYING ORGANOIDS.
14	SO WE DECIDED TO INVESTIGATE TO CREATE
15	THE ORGANOIDS FROM THE PATIENT'S SKIN FIBROBLAST
16	WITH THE 16P DUPLICATIONS AND DELETIONS. AND THEN
17	WE SELECTED SPECIFICALLY PATIENTS ACTUALLY THAT HAVE
18	THESE MACROCEPHALY AND MICROCEPHALY PHENOTYPES. AND
19	THEN WE PERFORMED THE MOLECULAR CELLULAR PHENOTYPE
20	CHARACTERIZATION AS WELL AS WE USED PHARMACOLOGICAL
21	INHIBITORS TO RESCUE THOSE PHENOTYPES.
22	SO FIRST QUESTION THAT WE ASKED WAS WERE
23	THE ORGANOIDS THAT THEY DERIVED FROM THESE PATIENTS
24	WITH MACROCEPHALY AND MICROCEPHALY AND THIS COPY
25	NUMBER VARIANT CAN RECAPITULATE THE HEAD SIZE
	12

42

1	PHENOTYPES OF THE PATIENTS. AND WE WERE VERY
2	PLEASED TO SEE THAT, IN FACT, WHEN WE GREW THOSE
3	ORGANOIDS, WE SAW THAT DELETIONS HAVE
4	HIGHER LARGER DIAMETER AND DUPLICATIONS HAVE
5	SMALLER DIAMETER, WHICH IS RECAPITULATION THAT HUMAN
6	HEAD SIZE PHENOTYPES. AND WE ALSO SAW THAT THE
7	PROPORTIONS OF THE SMALL ORGANOIDS IS HIGHER IN
8	DUPLICATIONS AND PROPORTION OF LARGE ORGANOIDS IS
9	HIGHER IN DELETIONS.
10	SO WHAT THIS MEANS IS THAT OUR ORGANOIDS,
11	UNLIKE MOUSE MODELS, ACTUALLY DO RECAPITULATE THE
12	HEAD SIZE PHENOTYPES OF THE PATIENTS.
13	NEXT, WE PERFORMED GENE EXPRESSION AND
14	ALSO PROTEIN EXPRESSION ANALYSIS OF THE ORGANOIDS
15	THAT ARE DERIVED FROM THESE PATIENTS AND CONTROLS AT
16	THREE STAGES, AT THE STAGE OF IPSC ONE MONTH
17	ORGANOIDS AND THREE MONTH ORGANOIDS.
18	AGAIN, THE NEXT QUESTION THAT WE ASKED AND
19	IS REALLY IMPORTANT IN THE FIELD, WHETHER THE
20	EXPRESSIONAL PROFILES OR MOLECULAR PROFILES OF THOSE
21	ORGANOIDS ACTUALLY RECAPITULATE WHAT'S GOING ON IN
22	HUMAN BRAIN. SO WHAT WE DID, WE ACTUALLY USED,
23	AGAIN, THIS RESOURCE BRAINSPAN, AND ACTUALLY THE
24	TOOL THAT WAS DEVELOPED BY JASON STEIN IN DAN'S LAB
25	THAT IS CALLED CONTEXT, WHICH CAN COMPARE, USING

43

1	MACHINE LEARNING, IT CAN COMPARE HOW DIFFERENT OR
2	HOW SIMILAR YOUR ORGANOIDS ARE TO THE HUMAN BRAIN.
3	AND WHAT WE SAW WAS ABSOLUTELY STUNNING, I THINK.
4	SO YOU CAN SEE ON THIS FIGURE, SO RED
5	COLOR MEANS THAT THIS IS MORE SIMILAR TO HUMAN
6	BRAIN; WHEREAS, BLUE COLOR MEANS LESS SIMILAR TO
7	HUMAN BRAIN. AND THIS IS THREE DIFFERENT STAGES OF
8	ORGANOIDS. THIS IS VERY EARLY STAGE, JUST IPC'S
9	FROM THIS PATIENT, AND THEN THERE IS ONE MONTH
10	ORGANOIDS, AND THEN WE KEEP THEM LONGER FOR THREE
11	MONTHS. AND WHAT YOU CAN ACTUALLY APPRECIATE HERE
12	IS THAT AT THE IPSC STAGE I'M SORRY ORGANOIDS
13	PRETTY MUCH RECAPITULATE THE GLOBAL EXPRESSIONAL
14	PROFILES OF EMBRYONIC AND EARLY FETAL BRAIN
15	DEVELOPMENT; WHEREAS, AS ORGANOIDS MATURE AND GO
16	MORE INTO ONE MONTH, YOU CAN SEE THAT IT'S MORE
17	SIMILAR TO LIKE EARLY MID-FETAL AND EVEN LATE
18	MID-FETAL DEVELOPMENT. AND, AGAIN, WHEN WE KEEP
19	CULTURING THEM FOR ANOTHER TWO MONTHS, THEY SHIFT
20	EVEN MORE IN TERMS OF GLOBAL EXPRESSIONAL PROFILES
21	TO MORE LIKE LATE MID-FETAL, LATE FETAL, AND EVEN
22	KIND OF NEONATAL.
23	SO WHAT THIS SLIDE SHOWS, THAT ORGANOIDS
24	THAT WE ARE PRODUCING ARE ACTUALLY SIMILAR TO THE
25	HUMAN FETAL BRAIN DEVELOPMENT. AND, AGAIN, YOU
	44

1	ALREADY SAW THIS QUOTE FROM DAN'S TALK ACTUALLY.
2	SO, AGAIN, USING THIS TOOL THAT DAN CREATED, WE ALSO
3	COMPARED THE LAYERS. SO OUR ORGANOIDS DO NOT HAVE A
4	SPECIFIC LAYER. IT'S KIND OF A MIXTURE OF THE
5	CELLS, BUT WE STILL CAN LOOK AT THIS EXPRESSION
6	PROFILE AND ASK A QUESTION, WHETHER THIS EXPRESSION
7	PROFILE FROM OUR ORGANOIDS, WHICH OF THE BRAIN
8	LAYERS IT CORRESPONDS TO. AND YOU COULD APPRECIATE
9	THAT AT ONE MONTH ORGANOIDS ACTUALLY RECAPITULATE IN
10	MORE LIKE EARLY LAYERS THAT ARE MORE LIKE AN EARLY
11	FETAL BRAIN AND THEN I'M SORRY. IT'S JUMPING ALL
12	OVER THE PLACE. I SHOULDN'T USE MY MOUSE. AND THEN
13	AT THREE MONTHS, YOU CAN SEE IT'S HIGHLIGHTED HERE
14	MORE IN RED, THAT IN THREE MONTHS THE RESEMBLANCE IS
15	MOVING TO UPPER CORTICAL LAYERS OF THE HUMAN BRAIN,
16	WHICH IS REALLY NICE, WE THOUGHT.
17	THEN WE PERFORMED TWO DIFFERENT OTHER
18	ANALYSIS. WE WANTED TO KNOW WHAT THE DIFFERENCES,
19	WHAT GENES ARE DIFFERENTIALLY KIND OF IMPACTED
20	BETWEEN DELETIONS AND DUPLICATIONS. AND WE OBSERVED
21	THIS VERY INTERESTING SET OF GENES. FIRST, WE
22	OBSERVED GENES THAT ARE RESPONSIBLE FOR THE NEURON
23	MIGRATION AND ACTIN CYTOSKELETON IN ORGANOIDS THAT
24	ARE DIFFERENTIALLY EXPRESSED BETWEEN DUPLICATIONS
25	AND DELETIONS. AND THE SECOND SET OF GENES THAT

45

1	PROBABLY UNSURPRISING THAT WE OBSERVED ARE THESE
2	NEURONAL AND GENES THAT PERFORM THIS NEURONAL AND
3	SYNAPTIC FUNCTIONS.
4	AND WE ALSO PERFORMED ANOTHER TYPE OF
5	ANALYSIS WHERE WE WANTED TO SEE WHICH OF THE GENES
6	ARE KIND OF EXPRESSED TOGETHER AND WHICH ARE
7	DIFFERENT BETWEEN CASES AND CONTROLS. AND, AGAIN,
8	WE SAW THIS MIGRATION MODULE, AGAIN, RECAPITULATION
9	OF OUR PREVIOUS ANALYSIS, AND ALSO NEURONAL AND
10	SYNAPTIC MODULE. AND WE ALSO SAW ANOTHER MODULE,
11	WHICH IS CHROMATIN MODULE, WHICH DAN ALSO MENTIONED
12	THAT CHROMATIN PROCESSES ARE ALSO VERY FREQUENTLY
13	IMPACTED IN AUTISM.
14	SO AFTER WE OBSERVED THESE MODULES AND THE
15	DIFFERENTIALLY EXPRESSED GENES FROM COMPUTATIONAL
16	ANALYSIS, WE REALLY WANTED TO KNOW WHETHER WE CAN
17	ACTUALLY OBSERVE THEM EXPERIMENTALLY. SO WHAT WE
18	DID, WE TOOK OUR ORGANOIDS FROM CONTROL, DELETION,
19	AND DUPLICATION AND WE SLICE THEM INTO THESE LIKE
20	THIN SLICES, PUT THEM ON THE SLIDES, AND THEN WE
21	STAINED THEM WITH DIFFERENT MARKERS,
22	IMMUNOFLUORESCENT MARKERS, AND WE SAW A REALLY
23	INTERESTING THING. SO YOU SEE THOSE GREEN DOTS IN
24	DELETION ORGANOIDS, THOSE ACTUALLY ARE MATURE
25	NEURONS THAT ARE LABELED HERE.

46

1	SO WE WHAT WE SAW, THAT IN THESE
2	DELETIONS, RIGHT, WHERE THE GENES ARE DELETED, WE
3	SEE MORE THESE IMMATURE NEURONS OR IMMATURE CELLS
4	WHICH ARE NEUROPROGENITORS. SO THEY WERE DECREASED
5	IN DELETIONS, AND AT THE SAME TIME THEY WERE
6	INCREASED IN DUPLICATIONS; WHEREAS, MATURE NEURONS
7	WERE OPPOSITE. SO WE SAW THAT THESE DELETION
8	ORGANOIDS HAVE MORE OF THESE MATURE NEURONS AND
9	DUPLICATIONS HAVE LESS. WHAT THIS TELLS US, THAT WE
10	ACTUALLY SEE IS THAT THESE COPY NUMBER VARIANTS
11	CAUSES ACCELERATED NEUROGENESIS IN DELETIONS AND
12	KIND OF DELAYED NEUROGENESIS IN THOSE DUPLICATIONS.
13	SO IF WE SEE MORE NEURONS IN DELETIONS, WE
14	THEN ASK THE QUESTION: ARE THERE MORE SYNAPSES?
15	WHEN THERE ARE MORE NEURONS, THERE COULD BE ALSO
16	MORE SYNAPSES IN THOSE ORGANOIDS. AND, INDEED, WHEN
17	WE STAINED THOSE SLICES OF ORGANOIDS WITH THE
18	MARKERS FOR THE SYNAPTIC PUNCTA, WE SAW THAT IN
19	DELETION, ORGANOIDS CONCORDANT WITH THE HIGHER
20	NUMBER OF NEURONS. WE ALSO SEE A HIGHER NUMBER OF
21	SYNAPTIC PUNCTA AS WELL.
22	NEXT, YOU REMEMBER THAT I TOLD YOU THAT WE
23	ALSO OBSERVED THIS MIGRATION MODULE. SO WHAT CAN BE
24	HAPPENING IN THE FETAL BRAIN WE THOUGHT IS THAT
25	MAYBE THERE IS DISRUPTIVE NEURONS HAVE TO MIGRATE
	17

47

1	TO SPECIFIC PLACES IN THE BRAIN, AND CERTAIN NUMBER
2	OF NEURONS. BUT HERE WE SAW THIS MIGRATION MODULE.
3	SO WE WANTED TO SEE WHETHER, IF WE PLANT ORGANOIDS
4	ON THE SPECIFIC MEDIA AND WE LOOK HOW NEURONS ARE
5	MIGRATING OUT OF ORGANOIDS, WHETHER WE CAN SEE ANY
6	OF THIS MIGRATION DEFECT. AND, INDEED, WHEN WE
7	PLATED ORGANOIDS CONTROL, AGAIN DELETION AND
8	DUPLICATION, ON THE MATRIGEL AND WE RECORDED FOR 72
9	HOURS, WE RECORDED A MOVIE, HOW THESE NEURONS ARE
10	MIGRATING. SO I'M GOING TO START THE MOVIE. I
11	DON'T KNOW IF YOU GUYS CAN SEE IT. BUT HERE IT
12	GOES. SO YOU CAN SEE HOW FROM CONTROL THOSE NEURONS
13	ARE MIGRATING AND THERE IS DELETION AND DUPLICATION.
14	YOU CERTAINLY CAN SEE THAT THOSE CELLS ARE JUST LIKE
15	HOVERING AROUND DELETIONS AND DUPLICATIONS AND NOT
16	MIGRATING AS FAR AS FROM CONTROLS. AND WHEN WE
17	QUANTIFIED THAT, WE DEFINITELY SAW THAT DELETIONS
18	AND DUPLICATIONS BOTH HAVE THIS DISRUPTIVE NEURONAL
19	MIGRATION. AND IN DELETIONS ACTUALLY YOU CAN SEE
20	IT'S EVEN MORE SEVERE THAN IN DUPLICATIONS.
21	AND THEN WHEN WE STAINED, AGAIN, THESE
22	PICTURES, YOU CAN CERTAINLY SEE THAT THESE FIBERS
23	HERE ARE DEFINITELY PROTRUDING FROM CONTROLS
24	FURTHER, AND YOU SEE THOSE NEURONS THAT ARE BLUE OR
25	WHITE, BLUE ON THE LEFT AND WHITE ON THE RIGHT, AND

48

1	YOU SEE MUCH LESS OF THESE NEURONS MIGRATING OUT OF
2	THE MUTANT DELETIONS AND DUPLICATIONS.
3	SO NOW WE CONFIRMED THAT WHAT WE SAW FROM
4	OUR COMPUTATIONAL ANALYSIS, THAT INDEED THIS
5	MIGRATION AND ALSO SYNAPTIC AND NEURONAL PROCESSES
6	ARE DISRUPTED BY THIS MUTATION. BUT WE WERE NOT
7	SATISFIED WITH THIS RESPONSE BECAUSE WE REALLY
8	WANTED TO KNOW WHAT EXACTLY CAUSES THIS DELAYED
9	MIGRATION AND THOSE SYNAPTIC DEFICITS. SO WE LOOKED
10	AT THE MIGRATION MODULE IN MORE DETAIL BECAUSE FROM
11	OUR MOLECULAR ANALYSIS WE CAN ACTUALLY IDENTIFY WHAT
12	SPECIFIC GENES DYSREGULATE THIS MIGRATION.
13	AND WE SAW THAT ONE OF THE PROCESSES SAY
14	THAT THIS REGULATION OF SMALL GTPASE OR REGULATION
15	OF RAW PROTEIN SIGNAL TRANSDUCTION, SO ONE OF THE
16	GENES WITHOUT THIS FUNCTION IS SO-CALLED SMALL
17	GFPASE RHOA. SO THIS RHOA IS VERY HIGHLY
18	UP-REGULATED IN BOTH ACTIVE RHOA IN BOTH DELETIONS
19	AND DUPLICATIONS. WHEN WE LOOKED AT THE
20	(UNINTELLIGIBLE), WE SAW THAT THIS OVER-ACTIVATION
21	OF RHOA HAS ACTUALLY BEEN SHOWN THAT IT CAN STALL
22	MIGRATION OF THE NEURONS. SO WE KIND OF IMPLICATED
23	THAT PROBABLY THESE MIGRATION DEFECTS ARE HAPPENING
24	BECAUSE OF THIS OVERACTIVE THIS RHOA MOLECULE.
25	SO WE WERE LUCKY ACTUALLY BECAUSE THERE IS
	49

1	ALREADY AN INHIBITOR OF THE RHOA THAT WAS DEVELOPED
2	THAT IS CALLED RHOSIN. SO WHEN WE TREATED IT'S A
3	VERY SPECIFIC INHIBITOR. SO WHEN WE TREATED OUR
4	ORGANOIDS STARTING FROM DAY SIX UP TO THE MONTH WITH
5	THIS RHOSIN, WHAT WE SAW WAS THAT IT ACTUALLY
6	RESCUES THE MIGRATION. SO YOU SEE IN THE BOTTOM ROW
7	THERE IS ALMOST NO DIFFERENCE BETWEEN THE
8	DUPLICATION AND DELETIONS THAT ARE TREATED WITH THIS
9	RHOSIN. SO TREATING ORGANOIDS WITH THIS INHIBITOR
10	ACTUALLY RESCUED THESE MIGRATION PHENOTYPES IN
11	ORGANOIDS.
12	SO YOU MIGHT THINK LIKE WHAT DOES RHOA
13	EVEN HAVE TO DO WITH THE 16P COPY NUMBER VARIANT
14	THAT IMPACTS 29 GENES? WELL, WE WONDERED THAT
15	OURSELVES AS WELL. AND ONE THING THAT ACTUALLY WE
16	DISCOVERED IS THAT ONE OF THE GENES WITHIN THIS 16P
17	COPY NUMBER VARIANT CALLED KCDT13 ACTUALLY INTERACTS
18	AT THE PROTEIN LEVEL WITH THIS OTHER MOLECULE WHICH
19	IS CULLIN3 UBIQUITIN LIGASE. SO IT'S A DIFFERENT
20	GENE THAT'S COMPLETELY IN DIFFERENT CHROMOSOME, BUT
21	THOSE TWO PROTEINS FORM A COMPLEX. AND ACTUALLY
22	RHOA IS A SUBSTRATE OF THIS COMPLEX. SO THIS
23	CULLIN3, A NEW GENE, A NEW PROTEIN, UBIQUITIN RHOA,
24	AND THEN THEY REACTED CHROMOSOMAL DEGRADATION. SO
25	IT REGULATES THE LEVELS OF RHOA. AND RHOA IS KNOWN

50

1	TO BE INVOLVED IN, LIKE, ACTIN CYTOSKELETAL
2	MIGRATION. SO THERE IS A TIGHT CONNECTION BETWEEN
3	THE 16P COPY NUMBER VARIANT AND THIS RHOA THAT WE
4	OBSERVED TO BE UP-REGULATED AND THAT'S CORRECTED BY
5	THE RHOSIN TREATMENT.
6	SO WHAT WE DECIDED TO DO, WE DECIDED TO
7	MAKE A MOUSE WITH THIS MUTATION IN THIS CULLIN3 GENE
8	JUST BECAUSE WE DIDN'T HAVE THE PATIENT'S ORGANOIDS
9	FROM THIS CULLIN3. AND ANOTHER THING ABOUT THIS
10	CULLIN3 IS THAT IT'S ALSO AUTISM GENE. SO
11	INTERESTINGLY, CULLIN3 IS ALSO MUTATED IN AUTISM AS
12	WELL.
13	SO WE MADE A MOUSE USING CRISPR FROM THESE
14	CULLIN3 GENES AND WE CORRECTED THIS MOUSE. AND THIS
15	MOUSE HAD A LOT OF VARIOUS DEFICITS. IT WAS
16	SMALLER. THE BRAIN WAS DIFFERENT. BUT THE MOST
17	KIND OF REWARDING THING FROM THIS WORK WAS THAT
18	ACTUALLY THIS CULLIN3 MOUSE ALSO HAS THE SAME RHOA
19	BEING UP-REGULATED. SO 16P COPY NUMBER VARIANT OR
20	KCDT13 IS A MEMBER OF THIS COPY VARIANT AND CULLIN3
21	IS ALSO MUTATED IN AUTISM. THEY BOTH INTERACT, AND
22	RHOA IN THE UP-REGULATED THIS RHOA MOLECULE.
23	AND THEN WE WANTED TO SEE WHETHER THIS
24	RHOSIN CAN ACTUALLY RESCUE SOME OF THE PHENOTYPES OF
25	THIS MOUSE. SO THIS CULLIN3 MOUSE ALSO HAS DEFECTS
	51

1	IN THE FIRING RATE AND BURST OF THE NEURONS. SO YOU
2	SEE THAT THE TRACKS OF LIKE NEURONAL ACTIVITY IS
3	LOWER ACTUALLY HERE. AND WHEN WE TREATED THOSE
4	NEURONS FROM THE MOUSE BRAIN THAT WE PLATED ON THE
5	SO-CALLED MICROELECTRODE ARRAYS AND WE TREATED WITH
6	RHOSIN. SO RHOSIN COMPLETELY RESTORED THIS IMPAIRED
7	NEURONAL ACTIVITY OF THIS CULLIN3 MOUSE BRAIN.
8	SO NOW WE KIND OF HAVE A MODEL WITH TWO
9	DIFFERENT AUTISM VARIANTS THAT CONVERGE ON THE SAME
10	PATHWAY. SO WHEN WE HAVE A NORMAL COPY NUMBER OF
11	16P, RIGHT, THEN THIS CULLIN3, KCDT13, INTERACTS
12	WITH CULLIN3, AND THERE IS SUBSTRATE OF THIS
13	COMPLEX, WHICH IS RHOA, COMPLEX UBIQUITIN A TRAY AND
14	THEY REACTED TO CHROMOSOMAL DEGRADATIONS AND
15	EVERYTHING IS FINE. HOWEVER, WHEN EITHER DELETION
16	OR DUPLICATION HAPPENS OF THIS VARIANT, AND KCTD13
17	IS IMPACTED, IT'S MUTATED. OR WHEN CULLIN3 IS
18	MUTATED IN AUTISM, THEN THIS RHOA IS NOT GETTING
19	UBIQUITIN A, THEN IT ACCUMULATES WHICH THEN CAUSES
20	ALL THESE DEFECTS THAT WE SEE, NEURONAL DEFECTS,
21	MIGRATION DEFECTS, AND OTHER DEFICITS.
22	SO NOW WE HAVE A MODEL WHERE THESE TWO
23	DIFFERENT MUTATIONS CONVERGE ON THE SAME PATHWAY.
24	AND NOW WE EVEN HAVE A DRUG THAT WE CAN TEST IN THE
25	FUTURE IN OTHER MODELS, FOR EXAMPLE, CULLIN3
	52

52

1	ORGANOIDS, AND SEE WHETHER IT RESCUES ALL THESE
2	DEFICITS.
3	SO JUST TO SUMMARIZE, I HOPE I CONVINCED
4	YOU THAT ORGANOIDS CAN RECAPITULATE PATIENTS'
5	PHENOTYPES, AT LEAST THE HEAD AND BRAIN SIZE
6	PHENOTYPES. THEN WE SAW THAT ORGANOIDS HAVE
7	SIGNATURES THAT ARE VERY SIMILAR TO DEVELOPING HUMAN
8	BRAIN. AND THEY HELP US TO IDENTIFY POTENTIAL
9	MECHANISMS SUCH AS DEFECTS IN MIGRATION AND
10	NEUROGENESIS THAT MAY BE DYSREGULATED BY TWO
11	DIFFERENT MUTATIONS IN AUTISM. AND ORGANOIDS HELPED
12	US ALSO TO IDENTIFY THE POTENTIAL CANDIDATE DRUGS
13	THAT COULD BE USED AS A POTENTIALLY THERAPEUTIC
14	TARGET.
15	AND, MOST IMPORTANTLY, I SHOWED YOU THAT
16	THERE COULD BE A CONVERGENCE OF DIFFERENT AUTISM
17	MUTATIONS ON THIS DOWNSTREAM PATHWAY. AND THIS IS
18	VERY IMPORTANT BECAUSE IN AUTISM AREA, MAYBE WE CAN
19	TREAT AUTISM WHEN ONE GENE IS INVOLVED, MAYBE WE CAN
20	UP-REGULATE IT, CREATE ANTISENSE OLIGOS OR
21	SOMETHING. BUT IF THERE IS A CNV, COPY NUMBER
22	VARIANT, IN THESE 29 GENES, THERAPEUTIC STRATEGIES
23	SEEM TO BE VERY LIMITED BECAUSE IT WOULD BE VERY
24	HARD TO KIND OF UP-REGULATE ALL 29 GENES OR
25	SOMETHING LIKE THIS. SO MAYBE FOR THE CNV IS WE

53

-	
1	NEED TO FOCUS OR FIND THOSE DOWNSTREAM PATHWAYS THAT
2	CAN BE TARGETED BY THE THERAPIES.
3	AND JUST TO HIGHLIGHT FUTURE DIRECTIONS,
4	OF COURSE, MIGRATION AND SYNAPTIC DEFICITS IS ONLY
5	ONE PATHWAY THAT WE SAW. AND WE THINK THERE ARE
6	OTHER PATHWAYS THAT COULD BE DYSREGULATED, SUCH AS I
7	SHOWED YOU THIS CHROMATIN-RELATED MODULE. SO I
8	THINK WE ARE JUST MAYBE SCRATCHING THE SURFACE OF
9	THE MECHANISMS OF DISEASE AT THIS POINT.
10	AND BECAUSE WE DID BULK RNASEQ, WE STILL
11	HAVE TO IDENTIFY WHAT SPECIFIC CELL TYPES ARE
12	IMPACTED BY THESE COPY NUMBER VARIANTS. AND WE'LL
13	BE DOING A SINGLE-CELL RNASEQ ON THOSE ORGANOIDS IF
14	WE CAN GET FUNDING FOR THAT.
15	THEN RHOA IS ACTUALLY COULD BE
16	IMPLICATED IN THE PATHWAY FOR OTHER AUTISM
17	MUTATIONS. FOR EXAMPLE, ONE OF THE PAPERS FROM
18	RICARDO DOLMA'S LAB WHERE COMPLETELY DIFFERENT GENE
19	IS MUTATED. CACNA1C IS A CALCIUM CHANNEL IN THE
20	TIMOTHY SYNDROME. THERE IS ALSO A POSSIBILITY THAT
21	IT'S REGULATED BY RHOA AS WELL. AND WE ARE WORKING
22	ON THERAPEUTIC STRATEGIES FOR THE DISEASE NOW.
23	MAYBE IN MOUSE, CULLIN3 MOUSE, ACTIVATE WITH CRISPR
24	A OR USING RHOSIN TO RESCUE THOSE PHENOTYPES. AND
25	WE ARE ALSO LOOKING TO RECRUIT THE PATIENTS WITH

54

1	CULLIN3 MUTATIONS NOW TO CREATE THE ORGANOIDS AND
2	SEE WHETHER OUR 16P FINDINGS ARE SIMILAR WITH RHOA
3	AND OTHER PATHWAYS IN CULLIN3 PATIENTS AS WELL.
4	SO I WOULD LIKE TO THANK PEOPLE IN MY LAB,
5	ESPECIALLY ALYSSON MUOTRI. IT'S A TIGHT
6	COLLABORATION WITH ALYSSON'S GROUP WHO ACTUALLY
7	TAUGHT US HOW TO MAKE ORGANOIDS. JOHN YATES' LAB
8	WHO DID PROTEOMIC ANALYSIS AND THE SIMONS FOUNDATION
9	FOR AUTISM RESEARCH AND FUNDED THIS WORK. AND THANK
10	YOU FOR YOUR ATTENTION.
11	CHAIRMAN GOLDSTEIN: THANK YOU, LILIA.
12	THAT'S REALLY AMAZING AND IMPRESSIVE.
13	WHAT I'D LIKE TO DO NOW IS TAKE JUST A
14	COUPLE MINUTES FOR SPECIFIC QUESTIONS TO LILIA AND
15	THEN EVOLVE INTO A MORE GENERAL DISCUSSION OF ARE
16	ANY OF THESE TARGETS REALLY GOING TO BE
17	THERAPEUTICALLY READY IF THERE WERE APPROPRIATE CELL
18	LINES AND COLLECTIONS AND RELATED ISSUES.
19	I THINK THE FIRST QUESTION I WANT TO JUST
20	LAUNCH TO GET US GOING, LILIA, IS IT SEEMS TO ME
21	THAT, ALTHOUGH YOU'VE DEVELOPED POTENTIAL TREATMENT
22	STRATEGIES, DON'T THEY HAVE TO BE ADMINISTERED AT
23	EXACTLY THE RIGHT TIME OF IN-UTERO DEVELOPMENT SO
24	THAT YOU WOULD NEED TO HAVE A DIAGNOSTIC THAT SAID
25	THE FETUS IN UTERO IS DESTINED TO HAVE SEVERE

1	AUTISM, SAY. AND THEN YOU'D REALLY HAVE TO DO THE
2	TREATMENT AT EXACTLY THE RIGHT MOMENT. AND
3	CERTAINLY YOU COULD NOT DO IT AFTER BIRTH IN MOST
4	CASES.
5	DR. IAKOUCHEVA: OF COURSE. NOT ONLY
6	THAT, LARRY, BUT WE ALSO NEED TO KNOW THE CELL TYPES
7	THAT ARE IMPACTED. MAYBE WE DON'T WANT TO TREAT
8	BEFORE WE KNOW WHAT EXACTLY CELL TYPES ARE IMPACTED.
9	THAT'S WHY WE ARE DOING THE SINGLE-CELL STUDIES.
10	I'M NOT SUGGESTING THAT WE ARE GOING TO
11	START TREATING RIGHT NOW. I THINK THERE IS MORE
12	WORK NEEDS TO BE DONE TO ACTUALLY IDENTIFY THE
13	MECHANISMS. BUT IN PRINCIPLE, YOU CAN IMAGINE THAT
14	THE DIAGNOSIS OF 16P, IT'S A BIG COPY NUMBER
15	VARIANT. AND IN PRINCIPLE IT COULD BE
16	MADE DIAGNOSIS COULD BE MADE FROM THE EITHER
17	AMNIOTIC FLUID DEFINITELY WHETHER BABY CARRIES 16P
18	OR NOT.
19	AND I'M NOT PROPOSING THAT MAYBE THAT'S
20	WHY WE WOULD LIKE TO KNOW, MAYBE TREATING RIGHT
21	AFTER THE BIRTH IN THE FIRST WEEK AFTER THE BIRTH
22	COULD BE ACTUALLY A POSSIBILITY. WE DEFINITELY NEED
23	TO WORK MORE TO DETERMINE THE WINDOWS OF THE
24	THERAPEUTIC TREATMENT, FOR SURE, CORRECT WINDOW AND
25	SO FORTH. BUT I THINK DIAGNOSIS IN UTERO IS NOW NOT
	56

1	A BIG PROBLEM ESPECIALLY FOR COPY NUMBER VARIANTS.
2	BECAUSE THEY'RE BIG, YOU CAN SEE THEM JUST BY ARRAY
3	CGH.
4	CHAIRMAN GOLDSTEIN: OTHER QUESTIONS FOR
5	LILIA BEFORE WE MOVE INTO A JOINT DISCUSSION? OKAY.
6	SO LET ME LAUNCH THE JOINT DISCUSSION WITH
7	A SET OF QUESTIONS FOR LILIA AND DAN. AND THE
8	ISSUE, I THINK, IS ONE OF HAVE WE HAS THE
9	COMMUNITY ADEQUATELY ANALYZED THE VARIOUS TYPES OF
10	HUMAN POPULATIONS? AND, OF COURSE, IN PARTICULAR IN
11	THE U.S., HAVE UNDERSERVED POPULATIONS BEEN SAMPLED?
12	AND DO WE KNOW TO WHAT EXTENT DIFFERENT GENETIC
13	VARIANTS ARE ACTIVE IN DIFFERENT GENETIC
14	BACKGROUNDS?
15	DR. GESCHWIND: THAT'S A GREAT QUESTION.
16	SO ABOUT TEN YEARS AGO, KIND OF SEEING THE EXPLOSION
17	OF SUCCESS IDENTIFYING GENES IN MOSTLY EUROPEAN
18	POPULATIONS, WE STARTED A PROJECT, ACTUALLY A
19	NETWORK FUNDED BY NIMH CALLED, IT'S AN AUTISM CENTER
20	OF EXCELLENCE, TO RECRUIT AFRICAN-AMERICANS WITH
21	AUTISM TO LOOK AT THOSE WITH AFRICAN ANCESTRY AND TO
22	SEE TO WHAT EXTENT GENETIC VARIATION WAS ON THE
23	AFRICAN OR EUROPEAN PARTS AND ALL OF THAT. THAT'S
24	AN ONGOING PROJECT THAT IS THAT'S THE ONLY ONE OF
25	ITS TYPE IN PSYCHIATRIC DISEASES THAT I'M AWARE OF

57

1	THAT'S NIH FUNDED.
2	I'M ANTICIPATING THAT WITHIN THE NEXT YEAR
3	WE'LL HAVE A SERIES OF OUR FIRST PAPERS OUT
4	WHERE YOU KNOW, WE HAVE TO GET THE SAMPLES TO A
5	LARGE ENOUGH COHORT, AND THEY'RE STILL NOT SUPER
6	LARGE RELATIVE TO THE EUROPEAN COHORTS, BUT SO FAR
7	WE DON'T HAVE ANY EVIDENCE THAT THE VAST
8	MAJORITY THE KIND OF DE NOVO MUTATIONS ARE
9	OCCURRING ANY DIFFERENTLY. IT'S JUST THAT AFRICAN
10	CHROMOSOMES, AS YOU PROBABLY KNOW, WE ALL CAME OUT
11	OF AFRICA. IN OTHER WORDS, IF WE ALL LOOK FOR OUR
12	COMMON ANCESTORS AS HUMANS, IT'S IN AFRICA, THERE'S
13	A BOTTLENECK. AND SO IF YOU ACTUALLY LOOK AND SO
14	THERE'S A BOTTLENECK COMING OUT OF AFRICA. THAT
15	MEANS ONLY A SMALL PROPORTION OF REAL HUMAN GENETIC
16	VARIATION CAME OUT OF AFRICA. AND THE REST OF IT
17	HAS STAYED IN AFRICA.
18	SO WHEN YOU LOOK AT AFRICAN CHROMOSOMES,
19	YOU SEE A LOT MORE RARE GENETIC VARIATION. AND SO
20	WE ARE KIND OF EXPLORING THAT. BUT SO FAR WE HAVE
21	NO EVIDENCE TO SUGGEST THAT THE ACTUAL TYPES OF
22	GENETIC VARIATION ARE DIFFERENT. IT'S JUST THAT
23	BECAUSE THE MARKERS ARE A LITTLE DIFFERENT, THEY'RE
24	HARDER TO DETECT IF YOU HAVEN'T LIKE, WE CAN'T
25	COURT THE SCORE FROM EUROPEANS OR FROM CHINESE OR

58

1	ANYBODY INTO ANOTHER POPULATION EASILY. BUT THE
2	MARKERS AND THE DISEASE THINGS ARE LIKELY TO BE THE
3	SAME.
4	JOE BUXBAUM AND BERNIE DEVLIN AND OTHERS
5	HAVE STARTED A PROJECT WITH PEOPLE OF HISPANIC,
6	SELF-IDENTIFIED HISPANIC BACKGROUND IN AUTISM THAT'S
7	MOVING FORWARD TOO. AND OURS IS A NETWORK THAT
8	ACTUALLY INVOLVES EMORY AND EINSTEIN AND WASH U IN
9	ST. LOUIS AND L.A. BUT THERE ISN'T A LOT GOING ON
10	THERE. AND IT'S VERY EXPENSIVE TO BE
11	COLLECTING AND SO NIH HAS GOTTEN LESS INTERESTED.
12	AND SO AT THE SAME TIME, THEN HAVING DIVERSE
13	BIOBANKS THAT HAVE THIS GENETIC DIVERSITY IN THEM
14	FOR IPSC'S IS ALSO ANOTHER BIG DEAL. SO ONCE WE
15	IDENTIFY MUTATIONS IN PATIENTS, WE'RE GOING TO CALL
16	THEM BACK IN, SELF-IDENTIFIED AFRICAN-AMERICAN
17	PATIENTS WHO HAVE AFRICAN ANCESTRY, AND TRY TO BANK
18	THEIR CELLS AS WELL. THAT'S ONE OF OUR GOALS. BUT
19	IT'S YEAH. IT'S AN IMPORTANT ISSUE.
20	AND WE STARTED IT ABOUT EIGHT OR NINE
21	YEARS AGO, ALMOST TEN, WHEN IT WASN'T REALLY AS WELL
22	APPRECIATED HOW IMPORTANT THAT IS AS IT IS NOW. SO
23	WE'VE JUST BEEN PLUGGING ALONG.
24	CHAIRMAN GOLDSTEIN: LILIA, DO YOU WANT TO
25	ADD ANYTHING TO THAT BEFORE I CALL ON ROSA AND THEN
	59

1	PAT?
2	DR. IAKOUCHEVA: WELL, I'M A MEMBER OF
3	THIS SO-CALLED NEW CONSORTIUM THAT NIH IS FUNDING
4	CALLED IGVF, IMPACT OF GENETIC VARIATION ON
5	FUNCTION. AND ONE OF WELL, THE GOAL OF THIS
6	CONSORTIUM IS TO CHARACTERIZE FUNCTIONAL IMPACT OF
7	EVERY SINGLE SNP, CHARACTERIZE OR PREDICT A
8	FUNCTIONAL IMPACT OF EVERY SNP THAT ACTED IN HUMAN
9	GENOME. AND ONE OF THE LEADS OF THIS CONSORTIUM IS
10	ALSO LOOK AT THE VARIANTS IN DIFFERENT POPULATIONS
11	AS WELL. AND I THINK IT WILL BE VERY IMPACTFUL.
12	IT'S JUST AT THE VERY BEGINNING. SO I THINK IT'S
13	GOING TO TAKE ANOTHER FIVE TO TEN YEARS TO ACTUALLY
14	GET SOME RESULTS FROM THIS. BUT I AGREE. IT'S VERY
15	MUCH NEEDED.
16	DR. GESCHWIND: IT'S SOMETHING WE CAN
17	ACCELERATE HERE IN CALIFORNIA THOUGH.
18	DR. IAKOUCHEVA: RIGHT. YEAH. THAT'S
19	SOMETHING THAT'S NEEDED TO LOOK AT THE VARIANTS IN
20	DIFFERENT POPULATIONS, ABSOLUTELY.
21	CHAIRMAN GOLDSTEIN: GREAT. THANK YOU.
22	ROSA.
23	DR. CANET-AVILES: THANK YOU, DR.
24	GOLDSTEIN. I JUST WANTED TO SPEAK ALSO ABOUT MORE
25	HIGH INCIDENCE DISEASES LIKE SCHIZOPHRENIA, BIPOLAR
	60

1	AS WELL. I JUST WANTED TO BRING UP A VERY LARGE
2	NIMH ANCESTRAL POPULATION NETWORK THAT LAUNCHED LAST
3	YEAR. AND WE'VE BEEN SPEAKING TO THEM. DR.
4	PANCHISION AT NIMH IS THE PROGRAM DIRECTOR ON THIS
5	AND HE HAS SOME SITES IN CALIFORNIA. AND THEY ARE
6	CURRENTLY THEY HAVE THOUSANDS OF DIVERSE
7	POPULATIONS FROM LATIN AMERICA AND AFRICAN
8	ANCESTRIES AS WELL AS SOUTH AFRICA AND ASIA.
9	AND THEIR GOAL IS TO RECRUIT THEY ARE
10	DOING BIOSPECIMEN COLLECTION, CLINICAL PHENOTYPING,
11	GENOMICS. AND THEY DON'T HAVE AN IPS CELL
12	COMPONENT. SO THAT'S SOMETHING THAT COULD BE OF
13	INTEREST. AND THAT INCLUDES MOSTLY SCHIZOPHRENIA
14	AND BIPOLAR POPULATION. JUST WANTED TO BRING THIS
15	UP AND RAISE IT TO THE TASK FORCE.
16	DR. GESCHWIND: YEAH. IN FACT, NELSON
17	FREIMER, HERE. I'M SORRY. YEAH. I TOTALLY SPACED
18	OUT ON THAT. THANKS, ROSA, FOR BRINGING THAT UP
19	BECAUSE THEY'VE BEEN DRIVING THAT STARTING IN COSTA
20	RICA, BUT NOW IN COLUMBIA AND OTHER PLACES AS WELL.
21	THANK YOU.
22	CHAIRMAN GOLDSTEIN: THANK YOU. PAT.
23	DR. LEVITT: YEAH, THANKS FOR BOTH GREAT
24	PRESENTATIONS. SO I'LL ASK A MORE GENERAL QUESTION.
25	THERE'S SORT OF IN THIS STANDARD PATH TO FOLLOW THAT
	61

1	GOES FROM DISCOVERY TO ALL SORTS OF IN VITRO
2	EXPERIMENTAL MODELS ULTIMATELY BEING TESTED IN
3	ANIMALS BEFORE IT GOES TO HUMANS. SO MAYBE YOU CAN
4	EACH SPEAK TO WHETHER YOU ENVISION A PARADIGM SHIFT
5	WHERE WE GO FROM ORGANOIDS TO CLINICAL TRIAL. GIVEN
6	SOME OF THE QUEASINESS AROUND SOME OF THE
7	PARTICULARLY RODENT MODELS, ALTHOUGH I WOULD CAUTION
8	THAT PUTTING A MUTATION ONTO A SINGLE BACKGROUND
9	STRAIN DOESN'T NECESSARILY SAY THAT YOU CAN'T
10	RECAPITULATE THE MAJOR PHENOTYPES. WE KNOW THAT
11	NOW, RIGHT? BUT I'M MORE INTERESTED IN YOUR
12	THOUGHTS ABOUT WHETHER YOU ENVISION A PARADIGM SHIFT
13	IN TERMS OF HOW ONE VIEWS GOING FROM DISCOVERY USING
14	HUMAN PLATFORMS TO DRUG DEVELOPMENT.
15	DR. GESCHWIND: I WAS GOING TO SAY
16	TOXICITY IS STILL A MAJOR ISSUE. SO YOU'D HAVE TO
17	USE ANIMALS FOR TOX STUDIES. BUT I THINK IN TERMS
18	OF FACE AND CONSTRUCT AND PREDICTIVE VALIDITY,
19	THERE'S STILL SOME WORK THAT HAS TO BE DONE TO
20	ACTUALLY REALLY SHOW THAT. AND THAT'S SOMETHING
21	THAT NEEDS TO BE DONE, BUT I'M OPTIMISTIC THAT THESE
22	MODELS WILL BE USEFUL TO THAT AND MAYBE BE MORE
23	TRANSLATABLE THAN SOME OF THE SINGLE BACKGROUND
24	MOUSE WORK THAT'S BEEN DONE TO DATE.
25	AND ONE THING THAT'S NICE IS IT'S EASY TO
	62

1	PUT MUTATIONS INTO MANY BACKGROUNDS AND STUDY THEM
2	IN PARALLEL SO THAT YOU CAN ACTUALLY STUDY THE
3	IMPACT OF THE MUTATION AND ITS FUNCTION IN THE DRUG
4	ACROSS DIVERSE POPULATIONS IN A DISH WHICH IS MUCH
5	MORE DIFFICULTY OTHERWISE. AND SO I DO THINK THAT
6	THERE WILL BE A SHIFT TOWARDS DRUG DEVELOPMENT USING
7	THESE METHODS, BUT STILL TOXICITY IS GOING TO HAVE
8	TO BE IN LARGE ANIMALS BECAUSE MOST DRUGS FAIL
9	BECAUSE OF TOXICITY.

DR. IAKOUCHEVA: I CAN SEE A BIG PROMISE 10 OF STEM CELL-DERIVED MODELS OR ORGANOIDS OR WHATNOT 11 FOR INITIAL DRUG SCREENING. FOR EXAMPLE, IF YOU 12 ALREADY HAVE FROM THE RESEARCH AND SUSPECTED PATHWAY 13 14 OR EVEN TAKE LIKE, AS DAN SAID, THE BROAD INSTITUTE, 15 RIGHT, THE DRUG AND SCREEN THEM IN NPC MODELS OR ORGANOIDS FOR INITIAL SCREEN. BUT I THINK WE WOULD 16 17 NOT BE ABLE TO GO FROM THE ORGANOIDS MODELS STRAIGHT INTO THE PATIENTS. THERE SHOULD BE EITHER NONHUMAN 18 19 PRIMATE, SUCH AS MARMOSET, IS A REALLY NICE MODEL. 20 MAYBE NOT EVEN MOUSE BECAUSE MOUSE IS TOO DIFFERENT 21 FROM HUMAN. AND ALSO THE CHIMPANZEE IS MORE SIMILAR 22 TO HUMANS. BUT I THINK ORGANOIDS AND STEM 23

24 CELL-DERIVED MODELS COULD BE A FIRST STEP. AND THEN25 ONCE THE DRUGS, THE MOST PROMISING TARGET, IS

63

1	IDENTIFIED, GO TO MARMOSET OR NONHUMAN OR HUMAN
2	PRIMATES FOR, AGAIN, TOXICITY OR EFFECTIVENESS OR
3	OTHER STUDIES.
4	DR. GESCHWIND: I GUESS I WOULD SAY I DO
5	SEE A PARADIGM SHIFT IN THAT WE ARE NOT GOING TO BE
6	RELYING AS MUCH ON ANIMAL MODELS FOR EFFECTIVENESS
7	BECAUSE THEY HAVEN'T PROVEN TOO VALUABLE YET. SO MY
8	PUSH WOULD BE, MY THINKING WOULD BE THAT FOR
9	EFFECTIVENESS, I THINK EVENTUALLY WHEN THERE'S A
10	LITTLE MORE DATA, I CAN SEE A TIME WHEN WE GO FROM
11	DEVELOPING A DRUG SHOWING IMPACT IN MULTIPLE
12	BACKGROUNDS IN A STEM CELL MODEL ACROSS HUMAN
13	POPULATIONS AND MULTIPLE MODELS TO THEN JUST
14	CHECKING FOR TOXICITY IN LARGE ANIMALS AND MOVING
15	INTO A PHASE 1 TRIAL, MUCH FASTER, MUCH BETTER, AND
16	OF COURSE, LESS RISK IF YOU'VE CHECKED IT IN LARGE
17	ANIMALS TOO.
18	CHAIRMAN GOLDSTEIN: FRED.
19	DR. FISHER: CAN YOU HEAR ME?
20	MR. TOCHER: YES, WE CAN HEAR YOU, FRED.
21	DR. FISHER: GREAT. THANKS FOR THE
22	PRESENTATIONS. AS A BOARD MEMBER AND PATIENT
23	ADVOCATE, NOT A SCIENTIST, I'M ILL PREPARED TO ASK
24	SCIENTIFIC QUESTIONS, BUT YOU'VE DONE A GREAT JOB
25	HELPING US UNDERSTAND THE OPPORTUNITY FOR INVESTMENT
	64

1	IN STEM CELL AND GENETIC RESEARCH IN A NUMBER OF
2	NEUROPSYCHIATRIC AREAS. YOU AND THE COLLEAGUES THAT
3	PRESENTED BEFORE YOU OVER THE LAST FEW MEETINGS ALSO
4	DID A GREAT JOB OF DOING THAT.
5	SO THE OPPORTUNITY TO INVEST MORE IN
6	NEUROPSYCHIATRIC RESEARCH WITH CIRM FUNDING SEEMS
7	SELF-EVIDENT AT THIS POINT. I'M HOPING THE TWO OF
8	YOU CAN LEND SOME INSIGHT INTO WHY NEUROPSYCH
9	RESEARCH IS UNDERREPRESENTED IN THE APPLICATIONS
10	THAT CIRM RECEIVES. WITHIN YOUR COMMUNITIES, IS
11	CIRM NOT SEEN AS POTENTIAL FUNDER OF THE KIND OF
12	WORK THAT YOU'VE BEEN DOING OR SEE NEEDS TO BE
13	DOING? HELP US UNDERSTAND WHY IT IS THAT PERHAPS
14	THOSE DOING GENETIC AND STEM CELL RESEARCH IN THE
15	NEUROPSYCH AREA AREN'T SEEKING FUNDING FROM CIRM TO
16	DO IT.
17	CHAIRMAN GOLDSTEIN: GREAT QUESTION.
18	DR. GESCHWIND: I MEAN I CAN SPEAK
19	PERSONALLY. THE EFFORT REQUIREMENT IS TOO MUCH FOR
20	THE AMOUNT GIVEN. SO WE DID HAVE A CIRM GRANT THAT
21	WAS PART OF THE GENOMICS PIECE, AND IT WAS SEVERAL
22	MILLION DOLLARS. IT WAS ENOUGH TO DO THAT HUGE
23	STUDY WITH SERGIU THAT IS ABOUT TO BE SUBMITTED
24	THAT'S AN INCREDIBLE COLLABORATION BETWEEN OUR
25	GROUPS.

65

1	BUT OTHER THAN THAT, I THINK THE FUNDING,
2	IF I REMEMBER, LET'S JUST SAY ON THE ORDER OF $300~$ K
3	A YEAR AND THEN IT REQUIRES AT LEAST 10-PERCENT
4	EFFORT OR SOMETHING LIKE THAT. AND IN OUR GENOMICS
5	LABS, THAT'S WAY TOO MUCH EFFORT FOR A GRANT THAT
6	SMALL. YOU CAN'T DO ANYTHING WITH IT. SO THAT'S
7	LIKE A 1-PERCENT EFFORT GRANT. BECAUSE WE HAVE LABS
8	THAT ARE IDENTIFYING GENETIC VARIATION, WHICH IS ONE
9	TYPE OF RESEARCH, AND THEN WE ARE TRANSLATING THAT
10	GENETIC VARIATION INTO MODEL SYSTEMS. THAT'S
11	ANOTHER TYPE OF RESEARCH. SO WE HAVE BIG LABS TO
12	KIND OF CONNECT THOSE THINGS TOGETHER IN-HOUSE.
13	AND SO IT TAKES A LOT OF DIFFERENT FUNDING
14	STREAMS TO DO THAT. SO AN AVERAGE NIH GRANT FOR
15	SOMEBODY IS GOING TO BE MULTIPLES OF THAT AND YOU'RE
16	GOING TO PUT IN A LOT LESS EFFORT. SO I THINK
17	REDUCING THE EFFORT REQUIREMENT SUBSTANTIALLY OR
18	BASICALLY LEAVING IT OFF, UNLESS THE GRANT IS HUGE.
19	I CAN UNDERSTAND IF YOU HAVE 1 \$2 MILLION A YEAR
20	GRANT TO AN INDIVIDUAL LAB OR A SERIES OF TWO OR
21	THREE LABS, THAT YOU'LL SAY, WELL, OKAY, EACH PI HAS
22	TO PUT IN 10-PERCENT EFFORT. THAT MAKES SENSE, BUT
23	OTHERWISE PI'S LIKE ME AND OTHERS IN MY FIELD CAN'T
24	AFFORD TO GIVE UP THE EFFORT FOR SUCH A SMALL AMOUNT
25	OF FUNDING FOR THAT GRANT.

66

1	SO WE'VE SEEN THEM COME ALONG, AND I'VE
2	SAID, OH, WE SHOULD APPLY FOR THAT. AND THEN WE
3	BECAUSE IT'S RIGHT UP OUR ALLEY. AND WE HAVE HAD
4	INTERNAL BROAD STEM CELL FUNDING FOR SOME OF THESE
5	PILOT GRANTS TO ACTUALLY BUILD THERAPEUTICS IN THESE
6	MODELS, AND THEN I CAN'T APPLY TO CIRM FUNDING FOR
7	IT BECAUSE IT'S NOT BECAUSE THE MECHANISM DOESN'T
8	FIT. SO I THINK IT HAS TO DO WITH MECHANISMS AND
9	EFFORT. MAYBE LILIA.
10	DR. IAKOUCHEVA: FOR ME IT WAS A DIFFERENT
11	REASON. ACTUALLY I APPLIED ONLY ONCE TO CIRM, AND I
12	DID NOT GET FUNDED. AND IT WAS ABOUT RHOSIN, ABOUT
13	RESCUING PHENOTYPES IN THE STEM CELLS AND SO FORTH.
14	IT WAS A STUDY I PRESENTED. FOR ME IT'S A
15	BUREAUCRATIC BURDEN, LIKE ASSEMBLING THIS
16	APPLICATION WAS A HUGE DRAIN ON MY TIME. ACTUALLY
17	THERE IS SO MUCH PAPERWORK THAT NEEDS TO BE, FORMS
18	THAT NEEDS TO BE FILLED IN, IT'S JUST INSANE. IT
19	WAS ABSOLUTELY INSANE FOR ME. THE AMOUNT OF EFFORT
20	THAT I PUT INTO ASSEMBLING THE APPLICATION WAS
21	ENORMOUS COMPARED TO NIH.
22	ACTUALLY ONE OF MY SUGGESTIONS, IF CIRM
23	CAN ACTUALLY SIMPLIFY THE APPLICATION PROCESS AND
24	MAKE IT MORE SIMILAR TO NATIONAL INSTITUTE OF HEALTH
25	WHERE IT'S ONLY FIVE DOCUMENTS THAT I NEEDED, YOUR
	67

67

1	BIO, YOUR RESEARCH PLAN, THE DATA SHARING, THE
2	REFERENCES, AND THE SUMMARY, IT WOULD BE SO MUCH
3	BETTER BECAUSE THE AMOUNT OF BUREAUCRACY THAT'S
4	NEEDED TO SUBMIT CIRM, I HAVE NOT APPLIED AFTER
5	THAT.
6	ANOTHER THING, FRED, DO YOU THINK THAT YOU
7	DON'T GET APPLICATIONS IN NEURO? OR YOU GET THEM,
8	THEY'RE NOT FUNDED WITH THE HIGHER AS HIGH
9	EFFICIENCY AS OTHER DISEASES? ONE OF THE REASONS
10	COULD BE THAT YOU GUYS, FROM MY UNDERSTANDING, ARE
11	LOOKING AT, LIKE, THE FINAL PRODUCT. AND
12	NEUROSCIENCE, WE ARE NOT KIND OF THERE YET. I THINK
13	WE ARE MORE STILL AT THE DISCOVERY AND MAKING MORE
14	LIKE R & D, RESEARCH AND DEVELOPMENT, JUST LOOKING
15	FOR TARGETS. MAYBE I'M WRONG, BUT TO ME IT SEEMS
16	LIKE THAT WAS THE REASON THAT MY APPLICATION WASN'T
17	FUNDED BECAUSE I WAS NOT PROPOSING TO PUT MY RHOSIN
18	INTO THE PATIENTS. THAT BASICALLY WAS THE REASON.
19	SO I DON'T KNOW.
20	CHAIRMAN GOLDSTEIN: INTERESTING. MARIA
21	MILLAN. FRED, WERE YOU GOING TO FOLLOW UP?
22	DR. FISHER: YEAH. I WAS JUST GOING TO
23	SAY THANK YOU FOR THAT INSIGHT BECAUSE THAT'S NOT
24	SOMETHING THAT WE HAVE ADDRESSED. AND WHEN WE ARE
25	LOOKING AT AREAS THAT ARE UNDERREPRESENTED IN OUR
	68

1	NEURO FUNDING PORTFOLIO, IT'S INTERESTING THAT
2	AWARENESS OF CIRM FUNDING, IF I UNDERSTOOD THE
3	RESPONSE, AWARENESS OF CIRM FUNDING IS THERE, BUT
4	THE BURDEN IMPOSED FOR THE DOLLARS RECEIVED, TO PUT
5	IT VERY GENERALLY, IS OUT OF PROPORTION. AND IF WE
6	WANT MORE APPLICATIONS IN UNDERREPRESENTED
7	NEUROINDICATIONS, PERHAPS WE NEED TO BE LOOKING
8	INWARD AT OUR OWN PROCESS. AND I'M GATHERING THAT
9	THE PEOPLE WHO HAVE PRESENTED TO US, LIKE THE TWO
10	DISTINGUISHED SCIENTISTS PRESENTED TODAY, COULD
11	PROVIDE US FURTHER INSIGHT IN HOW WE COULD IMPROVE
12	OUR INTERNAL PROCESS AND OUR EXPECTATIONS AND OUR
13	OUTREACH PROCESS THAT WE MAY FIND THAT WE SOLVE THE,
14	AT LEAST IN THE NEUROPSYCH SPACE, WE SOLVE SOME OF
15	THE PROBLEM WE SEEM TO HAVE IDENTIFIED. THANK YOU.
16	CHAIRMAN GOLDSTEIN: GOOD POINTS. MARIA
17	MILLAN.
18	DR. MILLAN: THANK YOU SO MUCH. AND THANK
19	YOU, FRED, FOR ASKING THAT QUESTION. I JUST HAD A
20	FOLLOW-UP TO THAT QUESTION, AND THEN ALSO I WANTED
21	TO SPEAK TO THE ANIMAL TO THE ORGANOID MODELS AND
22	WHERE THE FDA IS GOING WITH THAT.
23	LILIA, HAD YOU APPLIED TO CIRM SINCE THE
24	2016 REVAMP OF THE PROGRAM OPPORTUNITIES?
25	DR. IAKOUCHEVA: YEAH. I APPLIED AFTER
	69

1	2016, YES. IT WAS A DISC, I DON'T REMEMBER, 1 OR 2,
2	ONE OF THE DISC GRANTS. AND I APPLIED ONLY ONCE.
3	THIS IS THE REASON. I DIDN'T EVEN RESUBMIT IT
4	BECAUSE OF THE PAPERWORK BURDEN.
5	DR. MILLAN: ONE THING THAT CHANGED IS
6	THAT, AND I'M SURE ROSA CAN SPEAK TO THIS, IS THAT
7	WE JUST RELAUNCHED THE BASIC DISCOVERY AWARDS JUST
8	IN THE PAST YEAR, WHICH IS VERY, VERY BASIC. THE
9	OTHER THE DISC2 IS INTENDED TO COME UP WITH A
10	CANDIDATE, A THERAPEUTIC CANDIDATE. SO YOU'RE
11	ABSOLUTELY RIGHT, ESPECIALLY IN THE TAIL END OF CIRM
12	UNDER PROPOSITION 71, WHAT HAPPENED WAS THAT WE HAD
13	TO KIND OF REFINE OUR OFFERINGS. AND IT WAS MORE
14	TOWARD KIND OF THE DISCOVERY PROGRAMS THAT LED TO A
15	CANDIDATE. BUT NOW WE ALWAYS HAVE THE DISCOVERYO
16	AWARDS, WHICH ARE ROSA, YOU CORRECT ME \$2
17	MILLION AWARDS; IS THAT CORRECT? OKAY. OR 1.8.
18	BUT ONE OF THE THINGS I'M GOING TO TURN
19	IT OVER TO ROSA BECAUSE SHE KNOWS MORE ABOUT THAT.
20	BUT ABOUT THE FDA, THAT WAS AN EXCELLENT QUESTION.
21	AND I DO AGREE BECAUSE EVEN MOST RECENTLY IN JANUARY
22	2023 AN ARTICLE IN SCIENCE HAD COME OUT SPECIFICALLY
23	WITH THE TITLE "FDA NO LONGER NEEDS TO REQUIRE
24	ANIMAL TESTS BEFORE HUMAN DRUG TRIALS" WAS THE
25	TITLE. AND THAT IS WHERE THE FDA IS GOING. AND THE
	70

1	COMMISSIONER, ROB CALIFF, JUST BROUGHT ON A NEW
2	CHIEF SCIENTIST TO THE FDA, WHO I GOT TO MEET A
3	COUPLE OF MONTHS AGO WHEN SHE PRESENTED ON THE ROLE
4	OF HUMAN MODELS IN DRUG DEVELOPMENT, NAMANDJE
5	BUMPUS, WHO COMES FROM HOPKINS, IS NOW THE NEW CHIEF
6	SCIENTIST. AND SHE REALLY HIGHLIGHTED HOW MOST OF
7	THE TIME ANIMAL MODELS JUST DO NOT EVEN REFLECT THE
8	BIOLOGY AND ARE NOT PREDICTIVE AND HAVE NOT BEEN
9	REALLY HELPFUL.
10	SO I THINK THE PRESENTATION THAT YOU GAVE
11	IN TERMS OF THE RELEVANCE OF HUMAN INFORMATION IN
12	TERMS OF BOTH DISCOVERY AND THEN LATER ON IS REALLY
13	KEY. AND IT SEEMS THAT THE FDA IS TRENDING IN THAT
14	DIRECTION. SO I THINK THERE ARE OPPORTUNITIES
15	THERE. I WANTED TO JUST BRING THAT UP. THANK YOU
16	SO MUCH.
17	CHAIRMAN GOLDSTEIN: THANK YOU, MARIA.
18	ROSA.
19	DR. CANET-AVILES: THANK YOU, DR.
20	GOLDSTEIN. JUST SPEAKING TO THIS IS A QUESTION
21	THAT HAS COME UP COMING FROM DIFFERENT STAKEHOLDERS:
22	WHY HAS CIRM NOT FUNDED NEUROPSYCHIATRIC? SO THE
23	FUNDING MODEL UP UNTIL NOW WAS WE DIDN'T HAVE A
24	SCOPE. THE SCOPE WAS THE WHOLE DISEASE PORTFOLIO
25	BASICALLY.

71

1	NOW, WHEN I PRESENTED BACK IN JANUARY OR
2	FEBRUARY IN THE TASK FORCE, I PROVIDED AN OVERVIEW
3	OF WHAT ARE THE NEEDS, WHAT ARE THE NEEDS THAT WE
4	HAD IDENTIFIED BASICALLY IF WE WERE GOING TO INVEST
5	IN DISCOVERY TOWARDS CNS DISEASES. AND THE MAIN GAP
6	IS OUR UNDERSTANDING OF THE MECHANISMS UNDERLYING
7	NORMAL DISEASE PROCESSES IN THE BRAIN. AND WE HEARD
8	IN OUR LAST TASK FORCE AND IT'S REITERATED, IT WAS
9	REITERATED TODAY, AND THAT WAS THE WAY THAT WE WERE
10	BUILDING OUR CONCEPT.
11	SO THE FOUNDATIONAL AWARDS THAT WE HAVE,
12	THE FOUNDATIONAL AWARDS, THEY ARE ACTUALLY 1
13	MILLION, THEY ARE SMALLER AWARDS. AND IN ORDER TO
14	ADVANCE INNOVATION AND UNDERSTANDING OF DISEASE
15	MECHANISMS WHICH COULD BE PILOTED IF THIS BOARD
16	GREASE WITH NEUROPSYCHIATRIC, NEURODEVELOPMENTAL
17	TYPE OF DISORDERS, WE WOULD HAVE TO ENGAGE IN A NEW
18	FORM OF A NEW TYPE OF PROGRAM AS OUR PRESENTERS
19	ARE TELLING US TODAY. AND ONE OF THEM COULD BE
20	CATALYZING MULTIDISCIPLINARY INNOVATION AND ATTRACT
21	NEW TALENT AND IDEAS, ENGAGING WITH COLLABORATIVE
22	SCIENCE.
23	SO I JUST WANTED TO MAKE THIS
24	DIFFERENTIATION WHY WE HAVEN'T GOTTEN IT IS BECAUSE
25	OUR FOCUS WAS NOT DISEASE MECHANISMS. OUR FOCUS WAS
	72

1	ACTUALLY MECHANISMS OF PLURIPOTENCY IN STEM CELLS
2	AND REGENERATIVE MEDICINE, WHICH IS VERY DIFFERENT.
3	MS. DEQUINA-VILLABLANCA: LARRY, THERE ARE
4	NO MORE HANDS RAISED.
5	DR. LEVITT: I'LL RAISE MY HAND AGAIN.
6	SO, DAN, ARE YOU STILL THERE?
7	DR. GESCHWIND: YES, BUT I WAS MUTED.
8	DR. LEVITT: PERFECT. SO YOU PRESENTED
9	ELOQUENTLY ABOUT THE MULTIGENE COMPONENTS, THE
10	COMBINATORIAL COMPONENTS THAT ACCOUNT FOR MOST OF
11	THE DIAGNOSES. SO MAYBE YOU CAN SPEAK TO THAT IN
12	TERMS OF THE MODEL SYSTEMS THAT YOU'RE TALKING
13	ABOUT. HOW DO WE ACCOUNT FOR THAT? BECAUSE
14	CURRENTLY A LOT OF WHAT'S OCCURRING, AT LEAST IN
15	TERMS OF THE DISEASE MODELS AND DISORDER MODELS, HAS
16	BEEN BEAUTIFUL WORK OF CHROMOSOMAL DISRUPTIONS OR
17	SINGLE GENE MUTATIONS THAT WE KNOW ARE CAUSAL, ET
18	CETERA. SO MAYBE YOU CAN SPEAK TO THIS ISSUE OF
19	WHERE YOU THINK WE ARE GOING WITH TRYING TO
20	UNDERSTAND AND MODEL THE COMBINATORIAL MULTIGENE
21	COMPONENTS THAT ARE ACCOUNTING FOR MOST OF THESE
22	DIAGNOSES.
23	DR. GESCHWIND: YEAH. IT'S REALLY A
24	GREAT, GREAT QUESTION. I DON'T THINK ANYBODY HAS A
25	CONCLUSIVE I CAN'T GIVE YOU A HUNDRED PERCENT
	73

1	ANSWER TO THAT, BUT I CAN TELL YOU THAT THIS IS ONE
2	OF THE REASONS WHY A HUMAN MODEL IS SO ESSENTIAL TO
3	ACTUALLY IF WE'RE GOING TO BE ABLE TO LOOK AT
4	THAT. SO THERE WAS A RECENT PAPER IN AMERICAN
5	JOURNAL OF HUMAN GENETICS WITH TONY WYNSHAW-BORIS'
6	GROUP PUT A MUTATION ON DIFFERENT GENETIC BACKGROUND
7	HIGH AND LOW RISK. AND WE'VE BEEN DOING THAT FOR A
8	LITTLE WHILE JUST THE JURY ISN'T OUT YET. BUT YOU
9	CAN GET LINES FROM PEOPLE WITH INCREDIBLY HIGH, IN
10	THE TOP 1 OR 2 PERCENT OF POLYGENIC RISK FOR
11	DISORDER.
12	AND IN CARDIAC DISEASES AND IN CANCER,
13	SOMETIMES THAT'S BIGGER THE SAME SIZE AS ONE OF
14	THESE MONOGENIC RISK FACTORS. SO THAT YOU CAN GET
15	PATIENTS WITH INCREDIBLY HIGH RISK THAT PUTS THEM IN
16	THE TOP 5 PERCENT OF RISK AND YOU CAN MAKE MODELS
17	FROM THEM. AND ACTUALLY THE CIRM BANK CONTAINS
18	THEM. AND WE HAVE TRIED TO MAKE MODELS OUT OF HIGH
19	AUTISM RISK AND LOW AUTISM RISK. ACTUALLY ONE OF
20	THE ISSUES, JUST FOR THE BOARD, JUST SO YOU KNOW, IS
21	THAT THE QUALITY OF THOSE LINES WAS HIGHLY, HIGHLY
22	VARIABLE SO THAT OUT OF THE TEN THAT WE USED, ONLY
23	30 OR 40 PERCENT REALLY WORKED GREAT. AND WE HAD A
24	LOT OF DIFFICULTY WITH SOME OF THEM. PROBABLY A
25	LITTLE MORE WORK THAT NEEDS TO BE DONE THERE TO

74

1	DEVELOP	LINES.

2	BUT I'D SAY YOU GET PATIENTS, SO PATIENTS
3	HAVE BEEN GENOTYPED. AND THIS IS WE ARE WORKING
4	WITH PEOPLE WHO HAVE THESE PSYCHIATRIC DISEASE
5	COHORTS OR I WON'T CALL THEM DISEASES, BUT
6	DISORDERS, CONDITIONS BECAUSE IT'S JUST PART OF THE
7	HUMAN CONDITION. SO LIKE IF WE JUST TAKE THAT
8	TAKE THOSE FOLKS WHO ARE AT VERY HIGH POLYGENIC RISK
9	DUE TO THEIR GENOTYPE, AND WE HAVE ALL THAT
10	INFORMATION, YOU MAKE LINES FROM THEM. THEN YOU CAN
11	USE THOSE MODELS. AND THE EFFECT SIZE, THE IMPACT
12	SHOULD BE SIMILAR TO SOMEBODY WITH A MONOGENIC BIG
13	EFFECT SIZE MUTATION. SO THAT'S ALL DOABLE. AND
14	YOU OBVIOUSLY CAN'T DO THAT IN MOUSE, ET CETERA.
15	SO, YEAH. I HOPE THAT ANSWERS THAT, PAT.
16	DR. LEVITT: YEAH. THAT WAS GREAT. YEAH.
17	THANK YOU.
18	CHAIRMAN GOLDSTEIN: SO WE ARE STARTING TO
19	RUN A LITTLE SHORT ON TIME. SO, STEVE, WHY DON'T WE
20	LET YOU DO THE LAST QUESTION, AND THEN WE'LL DO
21	PUBLIC COMMENT AND I'LL LAY OUT A PROPOSED MAP FOR
22	MOVING FORWARD.
23	MR. JUELSGAARD: THANK YOU, LARRY. THIS
24	ISN'T REALLY A QUESTION, BUT AN OBSERVATION. SO IF
25	YOU READ THE LANGUAGE OF PROPOSITION 14 IN THIS
	75

75

1	AREA, IT TALKS ABOUT THE FACT THAT THE INSTITUTE
2	SHALL ALLOCATE AT LEAST \$1.5 BILLION OF PROCEEDS FOR
3	BASICALLY DISEASES AND CONDITIONS OF THE BRAIN AND
4	CENTRAL NERVOUS SYSTEM. NOWHERE ELSE IN EITHER
5	PROPOSITION 71 OR PROPOSITION 14 WAS SUCH LANGUAGE
6	AROUND AN AREA OF THE HUMAN EXISTENCE CREATED. SO
7	THIS FOR ME IS A SPECIAL CASE. AND THE FACT IT WAS
8	POINTED OUT SO UNIQUELY IN PROPOSITION 14 SUGGESTS
9	THAT THIS MAY WELL BE AN AREA THAT WE CAN TREAT
10	DIFFERENTLY THAN HOW WE HAVE BEEN TREATING OTHER
11	THERAPEUTIC AREAS OR OTHER CONDITIONS IN THIS
12	ORGANIZATION.
13	I'M SPEAKING NOW SPECIFICALLY ABOUT
14	FUNDING WHICH WE JUST HEARD SOME OF THE ISSUES
15	ASSOCIATED WITH. REMEMBER THAT THESE FUNDING
16	LIMITATIONS WERE CREATED QUITE SOME TIME AGO, WELL
17	BEFORE THIS PARTICULAR PROPOSITION CREATED THE \$1.5
18	BILLION FUNDING. SO ONE OF THE THINGS WE OUGHT TO
19	THINK ABOUT IS WHETHER WE WANT TO CREATE FOR THIS
20	AREA, IN ESSENCE, DIFFERENT LEVELS OF FUNDING
21	ASSOCIATED WITH THE DIFFERENT KINDS OF RESEARCH THAT
22	MIGHT BE NECESSARY TO REALLY BETTER UNDERSTAND THIS
23	AREA. WE ARE REALLY AT THE VERY FRONT END OF
24	UNDERSTANDING THIS AREA. SO IT'S GOING TO BE A LOT
25	OF WHAT WE'VE CALLED DISCOVERY RESEARCH, ESSENTIALLY

76

1	THESE SMALLER GRANTS OF EITHER, RIGHT NOW, ONE
2	MILLION OR ONE AND A HALF MILLION.
3	I WOULD THINK THAT ONE OF THE THINGS WE
4	MIGHT THINK ABOUT AND PRESENT TO THE ICOC IS THAT WE
5	REVISIT FOR THIS AREA AND THIS AREA ONLY EXPANDING
6	THOSE GRANTS SO THAT THEY'RE SUFFICIENTLY LARGE TO
7	REALLY DEAL WITH SOME OF THE ISSUES THAT HAVE BEEN
8	RAISED BY THE TWO PRESENTERS TODAY. THANK YOU FOR
9	THE TIME.
10	CHAIRMAN GOLDSTEIN: IT'S A GREAT POINT,
11	STEVE. BECAUSE THE TECHNOLOGY THAT'S IN USE TO MAKE
12	THE KIND OF PROGRESS THAT DAN AND LILIA TALKED
13	ABOUT, IT'S AMAZING TECHNOLOGY. AND IT IS NOT
14	CHEAP. SO THIS MAY BE AN OPPORTUNE TIME TO TACKLE
15	THAT EXACT ISSUE.
16	DR. IAKOUCHEVA: YEAH. I TOTALLY SUPPORT
17	THAT. I DON'T KNOW, GUYS, IF YOU KNOW, BUT ORGANOID
18	RESEARCH IS MUCH MORE EXPENSIVE THAN MOUSE RESEARCH.
19	LIKE, FOR US TO MAKE THE MOUSE, IT'S REALLY CHEAP.
20	IT'S LIKE 3K TO MAKE A MOUSE. AND TO PRODUCE
21	ORGANOIDS AT DIFFERENT TIME POINTS IN DEVELOPMENT,
22	ESPECIALLY SINGLE CELL SEQUENCING TECHNOLOGIES THAT
23	ARE VERY MUCH NEEDED, IF YOU HAVE ORGANOID, YOU WANT
24	TO DO SINGLE CELL SEQUENCING. IT'S 3K PER SAMPLE.
25	SO TO MAKE A MOUSE IS 3K. AND THEN MOUSE JUST

77

1	REPRODUCES AND COSTS NOTHING TO MAINTAIN. WHEREAS,
2	TO SEQUENCE ONE ORGANOID SAMPLE, SINGLE CELL, IS 3K.
3	AND TO BE STATISTICALLY ROBUST, WE NEED HUNDREDS OF
4	THOSE SAMPLES.
5	SO RAISING THE CEILING FOR THE FUNDING FOR
6	STEM CELL RESEARCH, AT LEAST FOR THE NEURO, I DON'T
7	KNOW ABOUT OTHER ORGANS, I THINK IS VERY IMPORTANT.
8	CHAIRMAN GOLDSTEIN: THANK YOU. MARIA
9	MILLAN.
10	DR. MILLAN: I DON'T WANT THAT WAS A
11	REALLY GREAT GIVING US SOME QUANTITATIVE MEASURES
12	THERE IS REALLY IMPORTANT. AND I THINK I JUST WANT
13	TO HIGHLIGHT WHAT ROSA HAD SAID, WHICH IS THE VALUE
14	OF IF YOU WERE TO DO THAT FOR EVERY SINGLE
15	RESEARCHER, HOW MUCH WOULD THAT COST, BUT IT'S THE
16	VALUE OF KIND OF THAT NETWORKED APPROACH. AND SOME
17	OF THE ABILITY TO LEVERAGE THE MODEL DEVELOPMENT I
18	THINK IS A REALLY KEY THING FOR THIS TASK FORCE TO
19	CONSIDER IN TERMS OF A VALUE OF A CONSORTIUM
20	APPROACH TO THIS BECAUSE IT DOES BRING VALUE TO THE
21	INVESTMENT IN CREATING THESE ORGANOID MODELS AND
22	ALSO LEVERAGES SOME OF THE OTHER CIRM PROGRAMS,
23	INCLUDING THE SHARED RESOURCES LABS THAT WILL
24	DEVELOP CELL AND ORGANOID MODELS. I JUST WANTED TO
25	MAKE THAT LINKAGE. THANK YOU.

78

1	CHAIRMAN GOLDSTEIN: THANK YOU, MARIA.
2	SO WE ARE RUNNING QUITE SHORT ON TIME.
3	I'D LIKE TO SUGGEST THAT WHAT WE DO AT OUR NEXT
4	MEETING IN JUNE IS TO CONTINUE A DISCUSSION THAT
5	ROSA INITIATED ABOUT WHAT AN INTERDISCIPLINARY
6	GRANTS PROGRAM MIGHT LOOK LIKE OR WHAT A CONCEPT
7	PLAN FOR SUCH PROGRAMS MIGHT LOOK LIKE. AND I THINK
8	TODAY'S DISCUSSION WILL HAVE A BIG IMPACT ON WHAT
9	ROSA BRINGS TO US. SO THAT WOULD BE ONE TOPIC WE
10	WOULD TAKE ON AT THE NEXT MEETING.
11	AND THEN THE OTHER IS TO DO ANOTHER LOOK
12	AT OUR PORTFOLIOS TO ASK THE QUESTION: IS THERE
13	ANYTHING ELSE THAT WE ARE MISSING IN OUR CURRENT
14	NEURO PORTFOLIO? AND PERHAPS THEN A RELATED
15	QUESTION: HAVE WE ADEQUATELY ADDRESSED NEURO
16	PROBLEMS THAT ARE IN UNDERSERVED COMMUNITIES WHERE
17	WE MIGHT MAKE A SIGNIFICANT IMPACT? AND THAT CAN BE
18	IN PART A BEGINNING OF FURTHER PLANNING FOR WHAT WE
19	MIGHT DO WITH THIS UNIQUE OPPORTUNITY IN NEURO. SO
20	ANY OBJECTIONS TO PROCEEDING IN THAT WAY?
21	DR. SOUTHARD: WELL, I COMPLETELY SUPPORT
22	IT, PARTICULARLY IF WE TAKE A CAREFUL LOOK AT THE
23	ADDICTION ISSUES THAT I RAISED EARLIER BECAUSE THEY
24	AFFECT BOTH OF THE AREAS THAT YOU JUST MENTIONED.
25	CHAIRMAN GOLDSTEIN: ABSOLUTELY.
	79

1	LILIA, YOU HAVE YOUR HAND UP.
2	DR. IAKOUCHEVA: I DON'T HAVE AN
3	OBJECTION. BUT CAN I MAKE ANOTHER SUGGESTION? SO
4	CIRM IS SUPPOSED TO BE A RESOURCE, RIGHT, FOR THE
5	INDUCED PLURIPOTENT STEM CELLS. SO FOR MY RESEARCH
6	IN AUTISM, LIKE, I WENT TO CIRM, I WANTED TO FIND
7	MORE PATIENTS WITH THIS COPY NUMBER VARIANT OR
8	CULLIN3 MUTATIONS THAT I WAS STUDYING. AND I SAW
9	THAT THERE ARE A LOT OF IPC'S. I WAS ACTUALLY
10	STUNNED. IT WAS LIKE 150, 200 IPC OF AUTISM. BUT
11	THE PROBLEM IS THAT THERE WERE NO GENETICS
12	ASSOCIATED WITH IT. SO I COULDN'T USE THIS
13	RESOURCE.
14	I REACHED OUT TO CHRIS AND TO PEOPLE WHO
15	DEPOSITED THOSE RESOURCES AND SAID, OH, GENETIC IS
16	SOMEWHERE THERE. BUT THE RESOURCE WAS LITERALLY
17	UNUSABLE BECAUSE IT DIDN'T HAVE AND IT WAS
18	GENOTYPED. ALL THE SAMPLES WERE ACTUALLY GENOTYPED,
19	BUT IT'S JUST IMPOSSIBLE TO FIND THE GENETICS.
20	SO THAT'S ANOTHER THING. WHEN YOU GUYS
21	ARE CREATING THOSE RESOURCES, I THINK YOU SHOULD
22	REQUIRE THE GENOTYPES TO BE ABLE TO SHARE WITH
23	RESEARCHERS BECAUSE THIS IS VERY, VERY IMPORTANT. I
24	CAN'T OVEREMPHASIZE THIS.
25	CHAIRMAN GOLDSTEIN: IT'S A GREAT POINT.
	80

1	I'M GUESSING THAT THERE'S PARTLY A CONSENT ISSUE
2	FLOATING AROUND IN THERE.
3	OKAY. IS THIS THE TIME FOR PUBLIC
4	COMMENT, MARIA?
5	MS. DEQUINA-VILLABLANCA: YES.
6	CHAIRMAN GOLDSTEIN: OKAY. PUBLIC
7	COMMENT.
8	MS. DEQUINA-VILLABLANCA: I DON'T SEE ANY
9	AT THE MOMENT, LARRY.
10	CHAIRMAN GOLDSTEIN: OKAY. SO UNLESS
11	THERE'S AN OBJECTION, WE HAVE A PLAN FOR MOVING
12	FORWARD. AND WE WILL ADJOURN ONE AND A QUARTER
13	MINUTES EARLY. SO USE THE TIME WISELY.
14	(THE MEETING WAS THEN CONCLUDED AT 2:58 P.M.)
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	81

REPORTER'S CERTIFICATE

I, BETH C. DRAIN, A CERTIFIED SHORTHAND REPORTER IN AND FOR THE STATE OF CALIFORNIA, HEREBY CERTIFY THAT THE FOREGOING TRANSCRIPT OF THE VIRTUAL PROCEEDINGS BEFORE THE TASK FORCE ON NEUROSCIENCE AND MEDICINE OF THE INDEPENDENT CITIZEN'S OVERSIGHT COMMITTEE OF THE CALIFORNIA INSTITUTE FOR REGENERATIVE MEDICINE IN THE MATTER OF ITS REGULAR MEETING HELD ON MAY 15, 2023, WAS HELD AS HEREIN APPEARS AND THAT THIS IS THE ORIGINAL TRANSCRIPT THEREOF AND THAT THE STATEMENTS THAT APPEAR IN THIS TRANSCRIPT WERE REPORTED STENOGRAPHICALLY BY ME AND TRANSCRIBED BY ME. I ALSO CERTIFY THAT THIS TRANSCRIPT IS A TRUE AND ACCURATE RECORD OF THE PROCEEDING.

BETH C. DRAIN, CA CSR 7152 133 HENNA COURT SANDPOINT, IDAHO (208) 920-3543

82